Электронный парамагнитный резонанс в смешанных кристаллах $(BaF_2)_{1-x}(LaF_3)_x$, активированных ионами Ce^{3+}

© Л.К. Аминов, Р.Ю. Абдулсабиров, С.Л. Кораблева, И.Н. Куркин, С.П. Курзин, А.Г. Зиганшин, И.А. Громов*

Казанский государственный университет, 420008 Казань, Россия * Laboratory of Physical Chemistry, ETH-Honggerberg, 8093 Zurich, Switzerland E-mail: linar.aminov@ksu.ru,

igor.kurkin@ksu.ru

В поле $H||C_4$ на частоте 9.5 GHz исследованы спектры ЭПР смешанных кристаллов $(BaF_2)_{1-x-y}(LaF_3)_x(CeF_3)_y$ с y = 0.001 = 0.1% и концентрациями x в интервале 0–0.02. В образце с x = 0.02 измерена угловая зависимость спектра. В сложном спектре ЭПР выделены линии, обусловленные центрами с тетрагональной симметрией и g-факторами ($g_{\parallel} = 0.75$, $g_{\perp} = 2.4$), близкими к измеренным в системе KY₃F₁₀:Ce³⁺. Это позволяет предполжить, что указанные центры представляют собой кубооктаэдрические кластеры типа La₆F₃₇, в которых один из ионов La³⁺ замещается ионом Ce³⁺.

Работа поддержана фонодом CRDF (грант REC-007) и фондом НИОКР Республики Татарстан (грант N $_{0.6-6.1-192/2004(\Phi)}$).

Прямое наблюдение методами ЭПР образования кластеров редкоземельных ионов (RE) в парамагнитных кристаллах $(MeF_2)_{1-x}(REF_3)_x$ практически невозможно вследствие сильного уширения резонансных линий при концентрациях, превышающих $x \approx 0.1\%$. В этом отношении более удобными представляются двойные растворы $(MeF_2)_{1-x-y}(RF_3)_x(REF_3)_y$ с диамагнитными ионами R (La, Lu, Y) и небольшой концентрацией у парамагнитной редкоземельной компоненты. Наблюдая оптические детектируемые спектры ЭПР в ряде таких соединений, Казанский [1] пришел к выводу о том, что процесс образования кластеров определяется суммарной концентрацией x + y трифлюоридов, а спектры ЭПР ионов RE³⁺ при концентрациях x + y > 0.001 отражают тетрагональную симметрию позиций ионов R в кластерах типа R₆F₃₇. Для более полного выяснения возможностей метода представляется полезным проведение исследований обычных ЭПР-спектров в различных смешанных кристаллах $(MeF_2)_{1-x-y}(RF_3)_x(REF_3)_y$ в максимально широком диапазоне концентраций x, y.

Недавно мы провели исследование спектров ЭПР смешанных кристаллов $(BaF_2)_{1-x}(LaF_3)_x$ с примесью 0.1% ионов Yb³⁺ [2]. Было установлено, что уже при малой концентрации x = 0.001 появляются дополнительные резонансные линии, обусловленные образованием тригональных кластеров, включающих два трехвалентных иона в позициях бария и два компенсирующих иона фтора (типа La³⁺-F⁻-Yb³⁺-F⁻). Анализ этих линий осложнялся сверхтонкой структурой исходного спектра ЭПР (существующего и при x = 0), обусловленной изотопами ¹⁷¹Yb и ¹⁷³Yb, однако никаких следов тетрагонального спектра, который можно было бы приписать ионам Yb³⁺ в кластерах La₆F₃₇, обнаружено не было.

В настоящей работе мы вновь исследовали те же смешанные кристаллы $(BaF_2)_{1-x}(LaF_3)_x$, используя теперь в качестве парамагнитных зондов ионы Ce³⁺. Этот ион не имеет магнитных изотопов, а следовательно, и сверхтонкой структуры спектров ЭПР. Исследовались образцы с x = 0, 0.001, 0.002, 0.005, 0.01, 0.02 с примесью 0.1% Ce³⁺. Спектры измерялись стационарным методом на спектрометре ИРЭС-1003 на частоте ≈ 9.5 GHz при температуре ≈ 15 К. Образцы с x = 0 и 0.02, кроме того, изучались импульсным методом (методом электронного спинового эха — ЭСЭ) на частоте ≈ 9.8 GHz при температуре ≈ 7 К.

В "чистом" (x = 0) наблюдался лишь один ЭПР-центр с тетрагональной симметрией ($g_{\parallel} = 2.601, g_{\perp} = 1.555;$ ср. с [3]). При такой ориентации, когда магнитное поле направлено вдоль оси симметрии четвертого порядка $(H \parallel C_4)$, имеет место характерный спектр: одиночная линия в магнитном поле $\sim 2.603 \, \mathrm{kG}$ и сдвоенная линия в магнитном поле $4.355 \,\mathrm{kG}$ (соответственно линии O_1 и О2 на рис. 1). Следует отметить, что интенсивность спектра ЭПР ионов Ce^{3+} в образце с x = 0 была в несколько раз меньше, чем интенсивность спектра ЭПР ионов Yb³⁺ в "чистом" BaF₂. При x = 0.001 интенсивность линии исходного тетрагонального центра ионов Ce³⁺ уменьшается и, кроме того, возникают дополнительные линии, две из которых (наиболее интенсивные) наблюдаются при H = 3.070 и $3.188 \, \mathrm{kG}$ (соответственно линии A и B на рис. 1, a). Дальнейшее увеличение концентрации LaF₃ приводит к существенному ослаблению исходного тетрагонального спектра (примерно на порядок при x = 0.01; см. рис. 1, *c*) и появлению новых дополнительных линий в магнитных полях 2.5-3.2 kG. Чтобы выяснить реальную концентрационную зависимость интенсивности различных линий ЭПР, мы измеряли спектры ЭПР в образцах Ba_{1-x}La_xF_{2+x} с различным х и одновременно регистрировали спектр ЭПР стандартного образца. В качестве стандарта был

Рис. 1. Спектр ЭПР ионов Ce³⁺ в смешанных кристаллах Ва_{1-x}La_xF_{2+x} + 0.1% Ce³⁺ для различных значений *x* при ориентации *H* || *C*₄. Линии *O*₁ и *O*₂ соответствуют основному тетрагональному центру ионов Ce³⁺. *A* и *B* — наиболее интенсивные дополнительные линии, возникающие при малых концентрациях *x*. Интенсивная линия в магнитном поле ~ 1 kG — спектр ЭПР стандартного образца CaF₂ + 0.8 Er³⁺.

Рис. 2. Угловая зависимость спектра ЭПР в образца $Ba_{1-x}La_xF_{2+x} + 0.1\% Ce^{3+}$ для x = 0.02 в плоскости $C_4-C_3-C_2$. $\theta = 0$ соответствует ориентации $H \parallel C_4$.

выбран монокристалл CaF₂ + 0.8 Er. эта система удобна, так как в ее спектре ЭПР наблюдается только кубический Er³⁺-центр (изотропная ЭПР линия с g = 6.78, $H \sim 1.0$ kG и шириной линии ~ 40 G, близкой к ширине линии изучаемых ионов Ce³⁺).

Образец с x = 0.02 мы изучали более детально. Исследование методом ЭСЭ показало, что в спектре этого образца отсутствует изотропная широкая линия, аналогичная наблюдавшейся ранее в образцах $(BaF_2)_{1-x}(LaF_3)_x + 0.1\%$ Yb³⁺ [2] при $x \ge 0.01$. Таким образом, мы имеем основание считать, что в исследованных в настоящей работе образцах $(BaF_2)_{1-x}(LaF_3)_x + 0.1 \text{ Ce}^{3+}$ при $x \approx 0.02$ не образуются парамагнитные центры с разупорядоченной структурой окружения.

Анализ угловой зависимости спектра ЭПР в образце с x = 0.02 (рис. 2) указывает, кроме того, на наличие дополнительных резонансных линий, принадлежащих парамагнитному центру тетрагональной симметрии с $g_{\parallel} \approx 0.75$, $g_{\perp} = 2.4$. Ширина линий этого центра ($\sim 200 \text{ G}$) на порядок больше, чем ширина линий *O*-центра, а интенсивность сравнима с интенсивностью *O*-центра в образце с x = 0. Этот центр может быть связан с формированием кластеров типа La₆F₃₇, что подтверждается близостью найденных здесь значений *g*-факторов к наблюдавшимся ранее в системе KY₃F₁₀: Ce³⁺, решетка которой включает кубооктаэдрические кластеры Y₆F₃₆, а ионы Ce³⁺ занимают позиции Y³⁺ в них ($g_{\parallel} = 0.77, g_{\perp} = 2.46$ [4]).

Таким образом, можно сделать вывод, что спектры ЭПР в смешанных кристаллах $(BaF_2)_{1-x}(LaF_3)_x$ свидетельствуют о возможном образовании в этих системах кубооктаэдрических кластеров La_6F_{37} , однако дополнительные линии ЭПР не всегда связаны именно с такими кластерами. Более полная расшифровка спектров ЭПР требует дальнейших исследований.

Список литературы

- С.А. Казанский. ЖЭТФ 89, 4(10), 1258 (1985); С.А. Казанский, А.И. Рыскин. ФТТ 44, 8, 1356 (2002).
- [2] L.K. Aminov, R.Yu. Abdulasabirov, M.R. Gafurov, S.L. Korableva, I.N. Kurkin, S.P. Kurzin, R.M. Rakhmatullin, A.G. Ziganshin. In: Specialized Colloque Ampere "NMR and EPR of Broad Line Solids". Abstracts. Portoroz, Slovenia. (2003). P. 114.
- [3] А.А. Антипин, И.Н. Куркин, Г.К. Чиркин, Л.Я. Шекун. ФТТ 6, 7, 2014 (1964).
- [4] В.А. Иваньшин, И.Н. Куркин, И.Х. Салихов, Ш.И. Ягудин. ФТТ 28, 8, 2580 (1986).