01;05;08 Неколлинеарная сдвиговая поверхностная волна на движущейся доменной границе ферромагнетика

© Е.А. Вилков, В.Г. Шавров, Н.С. Шевяхов

Ульяновское отделение Института радиотехники и электроники РАН E-mail: ufire@mv.ru

Поступило в Редакцию 17 февраля 2001 г.

Обсуждаются возможность существования и свойства неколлинеарной сдвиговой поверхностной волны на движущейся доменной границе ферромагнетика.

Как специфическая разновидность неколлинеарные поверхностные (граничные) волны описывались, видимо, впервые в работе [1] при изучении параметрического преобразования электрозвуковых волн в сегнетоэлектрике движением удерживающих доменных границ (ДГ). Термин "неколлинеарная волна" отражает установленное в [1], а затем уточненное в [2], свойство электрозвуковой волны отклоняться волновой нормалью в сторону движения ДГ при сохранении граничной локализации и стационарности распространения, т. е. быть неколлинеарной первоначальному направлению вдоль ДГ для статичного случая.

Попытка доказательства существования аналогичного рода неколлинеарных сдвиговых поверхностных волн (НСПВ) на движущихся ДГ в ферромагнетиках предпринималась в [3]. Однако анализ дисперсионного соотношения основывался на весьма приближенных оценках, полученных методом возмущения, что не позволяло судить о свойствах НСПВ с надлежащей ясностью и надежностью. К тому же примененное в [3] представление магнитостатических полей рассеяния фактически исключало рассмотрение обратных волн. В настоящем сообщении устранены оба этих недостатка и впервые показана полная картина спектра НСПВ в кубическом ферромагнетике на движущейся ДГ, основанная на точном количественном расчете.

Примем, что ДГ имеет (010)-ориентацию по оси у лабораторной системы отсчета x0yz и движется в этом направлении со скоростью $V_D < c_t$, $c_t = (\lambda/\rho)^{1/2}$ — скорость сдвиговых волн без учета магнито-

40

стрикции, λ — модуль сдвига, ρ — плотность ферромагнетика. В сочетании с выбором частоты ω ниже запрещенной щели безобменного спектра магнитоупругих волн указанное требование структурной устойчивости ДГ в массивных (непленочных) образцах позволяет воспользоваться моделью геометрически тонкой ДГ с текущей координатой $y_D = V_D t$. Условимся, что сдвиговые волны распространяются в плоскости x0y и имеют смещения в доменах $\mathbf{u}_j \parallel z \parallel \mathbf{M}_s^{(j)}$ ($M_s^{(1)} \uparrow \downarrow M_s^{(2)}$, j = 1 при $y > y_D$, j = 2 при $y < y_D$). Внутренние поля $\mathbf{H}_i^j \parallel z$ определяются полем магнитной анизотропии H_a ; поэтому для 180-градусной ДГ имеем $M_s^{(j)} = (-1)^{j+1}M_s$, $H_i^{(j)} = (-1)^{j+1}H_a$, где M_s — спонтанная намагниченность.

С учетом указанного обстоятельства для принятой геометрии распространения из уравнений Максвелла, линеаризованного уравнения движения магнитного момента и уравнения движения теории упругости в безобменном магнитостатическом приближении получим в качестве исходных уравнений

$$\rho \frac{\partial^2 u_j}{\partial t^2} = \lambda \nabla^2 u_j + \frac{(-1)^{j+1} \beta}{4\pi M_s} \nabla^2 \varphi_j,$$
$$\left(\frac{\partial^2}{\partial t^2} + \omega_k^2\right) \nabla^2 \varphi_j = -4\pi \gamma \beta \omega_0 (-1)^{j+1} \nabla^2 u_j. \tag{1}$$

Здесь ∇ — оператор Гамильтона в плоскости x0y, φ_j — магнитостатический потенциал, $\omega_0 = \gamma H_a$ — частота однородной прецессии, $\omega_k = [\omega_0(\omega_0 + \omega_M)]^{1/2}$ — частота магнитоакустического резонанса, $\omega_M = 4\pi\gamma M_s$ — частота намагничивания, γ — гиромагнитное отношение, β — магнитоупругий коэффициент. Используя аналогично [1–3] прием перехода в сопутствующую ДГ систему отсчета, можно показать на основании (1), что в условиях активации только низкочастотной (квазиакустической) ветви спектра магнитоупругих волн ($\omega < \omega_k$) и с учетом требования ограниченности решения существует единственная возможность представления НСПВ:

$$\varphi_{j} = \Phi_{j} - \frac{4\pi\gamma\beta\omega_{0}(-1)^{j+1}}{\omega_{k}^{2} + \left[i\omega + s(-1)^{j}V_{D}\right]^{2}}u_{j},$$

$$u_{j} = U_{j}\exp i(kx + py - \omega t)\exp\left[(-1)^{j}s(y - y_{D})\right],$$

$$\Phi_{j} = F_{j}\exp\left[i(kx - \Omega t)\right]\exp\left[(-1)^{j}|k|(y - y_{D})\right].$$
(2)

В выражениях (2) Φ_j — потенциалы полей рассеяния магнитных полюсов, индуцируемых на ДГ распространяющейся НСПВ, *k*, *p* имеют

соответственно смысл величин продольной и поперечной компонент полного волнового вектора НСПВ **К** = **k** + **p**, *s* — коэффициент ее амплитудного спадания, а Ω — частота колебаний НСПВ в системе покоя ДГ. Обратим внимание на то, что вследствие неколлинеарности волны $(p \neq 0)$ частоты колебаний сдвиговых смещений и потенциалов рассеяния неодинаковы — связаны между собой доплеровским соотношением: $\omega = \Omega + \mathbf{KV}_D = \Omega + pV_D$. Вследствие того что (2) являются решением уравнений (1), имеем равенства

$$p = \frac{V_D}{c_t} \frac{\omega_k^2 - 2\omega^2 - s^2 c_t^2 (1 - 2V_D^2/c_t^2) + K^2 c_t^2}{\omega_L^2 - \omega^2 + s^2 V_D^2},$$

$$K^2 = (\omega_L^2 - \omega^2 + s^2 V_D^2) \frac{(\omega_k^2 - \omega^2 + s^2 V_D^2) [s^2 (1 - V_D^2/c_t^2) + \omega^2/c_t^2] - \chi \omega_0^2 s^2}{(\omega_L^2 - \omega^2 + s^2 V_D^2)^2 + 4s^2 \omega^2 V_D^2} + 4s^2 \omega^2 \frac{V_D^2}{c_t^2} \frac{\omega^2 - \chi \omega_0^2 + s^2 c_t^2 (1 - V_D^2/c_t^2)}{(\omega_L^2 - \omega^2 + s^2 V_D^2)^2 + 4s^2 \omega^2 V_D^2}.$$
(3)

Здесь $\omega_L^2 = \omega_k^2 - \chi \omega_0^2$, $\chi = \gamma \beta^2 / \lambda M_s \omega_0$ — безразмерная константа магнитоупругой связи ферромагнетика.

Дисперсионное соотношение НСПВ следует из равенства нулю детерминанта системы однородных алгебраических уравнений, образующихся при подстановке (2) в стандартные граничные условия непрерывности на ДГ сдвиговых смещений и напряжений, потенциалов и нормальных компонент магнитных индукций. Оно может быть приведено к виду

$$s + \frac{\chi\omega_0\sigma G(\omega, V_D)[(\omega^2 - s^2V_D^2 - \omega_k^2)^2 + 4s^2V_D^2\omega^2]}{[(\omega^2 - s^2V_D^2 - \omega_k^2)^2 + 4s^2V_D^2\omega^2]} |k| = 0, \quad (4)$$

+ $\chi\omega_0^2[(\omega^2 - s^2V_D^2 - \omega_k^2) - 2pV_D\omega]$

где $\sigma = k/|k|$. Функция $G(\omega, V_D)$, описывающая реакцию магнитной подсистемы посредством полей рассеяния, задается равенством

$$G(\omega, V_D) = \frac{\omega^2 - s^2 V_D^2 - \omega_k^2}{(\omega^2 - s^2 V_D^2 - \omega_k^2)^2 + 4s^2 V_D^2 \omega^2} \left[\omega - \frac{\omega_0 \omega_M (\omega - \sigma \omega_0)}{(\omega - \sigma \omega_0)^2 + s^2 V_D^2} + \frac{\sigma \omega_M s^2 V_D^2}{(\omega - \sigma \omega_0)^2 + s^2 V_D^2 + 4s^2 V_D^2 + \omega_0 \omega_M}}{(\omega - \sigma \omega_0)^2 + s^2 V_D^2 - \sigma \omega_M (\omega - \sigma \omega_0)} \right] + \frac{2s^2 V_D^2 \omega}{(\omega^2 - s^2 V_D^2 - \omega_k^2)^2 + 4s^2 V_D^2 \omega^2} \frac{(\omega - \sigma \omega_0)^2 + s^2 V_D^2 + \omega_0 \omega_M - 2\sigma \omega_M \omega}{(\omega - \sigma \omega_0)^2 + s^2 V_D^2 - \sigma \omega_M (\omega - \sigma \omega_0)}.$$
(5)

Письма в ЖТФ, 2001, том 27, вып. 17

•

Полюса функции $G(\omega, V_D)$ определяют частоты ферромагнитного резонанса (ФМР) на полях рассеяния

$$\omega = \sigma \omega_0 + \frac{\sigma \omega_M \pm \sqrt{\omega_M^2 - 4s^2 V_D^2}}{2},\tag{6}$$

а нули указывают на наличие антирезонансного отклика магнитной подсистемы. Равенство (6) выполняется только для прямых ($\sigma = 1$) волн и в статическом случае $V_D = 0$ определяет спектральный дуплет $\omega = \omega_0$ и $\omega = \omega_0 + \omega_M$ магнитостатических поверхностных волн на неподвижной ДГ для ортогонального распространения к полям спонтанного намагничивания в доменах [4].

Выражения (3) удобно использовать для последовательного исключения величин p и K^2 в (4), где $|k| = \sqrt{K^2 - p^2}$. Образующееся одномерное нелинейное уравнение типа $\mathcal{F}(\omega, s) = 0$ решается стандартными численными методами и позволяет определить по заданной частоте ω вначале s, а затем обратной подстановкой ω и s в (3) остальные характеристики НСПВ. На рисунке представлена типичная картина спектра НСПВ для наиболее интересного случая близких значений χ и ω_M/ω_0 . Горизонтальные штриховые линии I, III показывают соответственно уровни частоты $\omega_0 \Phi MP$ для прямых (k > 0) волн и частоты обрезания спектра обратных (k < 0) волн $\omega^* = \omega_0(\sqrt{1 + 4\omega_M/\omega_0} - 1)/2$, выражающей антирезонансный отклик магнитной подсистемы. Поскольку обычно ω^* заметно меньше ω_L , спектр обратных, весьма слабо локализованных на ДГ НСПВ (см. штриховую при $V_D = 0$ и сплошную при $V_D \neq 0$ линии при k < 0) практически не отличается от акустического. Увеличение углового наклона квазиакустических участков спектра за счет движения ДГ (имеет место и для пронумерованных в порядке возрастания скорости ДГ кривых 1-4 прямых волн; штриховая кривая II соответствует случаю $V_D = 0$) вызвано неинвариантностью k (в отличие от K) к вариациям V_D .

Из поведения дисперсионных кривых 1-4 следует, что основные изменения спектра под влиянием движения ДГ происходят в узкой полосе частот (на рисунке дана для удобства восприятия в увеличенном масштабе) $\omega_0(1-\chi) \leq \omega \leq \omega_0$. Движение ДГ с малыми скоростями (см. фрагменты ветвей 1, 2) приводит к характерному для двукратного вырождения мод петлеобразному изгибу ветвей от коротковолнового асимптотического предела спектра НСПВ на статичной ДГ (штриховая линия II) к уровню ФМР I. Вытянутость петли в коротковолновую

Общая картина спектра неколлинеарной сдвиговой поверхностной волны на движущейся доменной границе в ферромагнетике. Кривые 1, 2 соответствуют случаю медленных ($V_D \ll c_t$) движений ДГ; кривая 3 — режиму движения ДГ с умеренной скоростью; 4 — режиму быстрого движения ДГ ($V_D \simeq c_t$) с околозвуковой скоростью.

сторону спектра тем сильнее, чем меньше V_D , что заставляет считаться с возможностью нарушения критерия геометричности ДГ. В поворотной точке петли, представляющей корневую особенность вырождаемых движением ДГ мод I, II (играют такую же роль, что и дуплет линий ФМР в спектре магнитостатических поверхностных волн на движущейся ДГ [5]), групповая скорость НСПВ претерпевает разрыв, а ее граничная локализация максимальна; глубина локализации НСПВ здесь порядка длины волны.

Кривые 1-3 оканчиваются (обрезаются) в точках, где полное волновое число К НСПВ совпадает с волновым числом магнитоупругой

сдвиговой объемной волны, а $s \equiv 0$. Асимптотический участок спектра последней при $\chi \ll \omega_M/\omega_0$ расположится много выше уровня ФМР и кривые типа 1 и 3 закончатся на линии ФМР. Исключение представляют дисперсионные ветви типа кривой 4, соответствующие, как правило, околозвуковым режимам движения ДГ и лежащие над линейной частью спектра магнитоупругой сдвиговой объемной волны (специфическая ветвь "быстрых" НСПВ, существующих только на движущейся ДГ и характеризующихся слабой граничной локализацией). Они всегда оканчиваются на оси частот в точках при $s = 0, K \equiv p$, когда сцепление НСПВ с ДГ магнитными полосами прекращается из-за компланарности фронта волны ДГ. Аналогичное, но не осложненное частотной дисперсией расцепление электрозвуковой волны с движущейся ДГ в сегнетоэлектрике, т.е. фактически вырождение НСПВ в объемную сдвиговую волн, отмечалось в работе [2].

Работа выполнена по проекту А 0066 ФЦП "Интеграция".

Список литературы

- [1] Шевяхов Н.С. // Акуст. журн. 1999. Т. 45. № 4. С. 570-571.
- [2] Гуляев Ю.В., Ельмешкин О.Ю., Шевяхов Н.С. // Радиотехника и электроника. 2000. Т. 45. № 3. С. 351–356.
- [3] Vilkov E., Shavrov V., Shevyakhov N. // Proc. Moscow Internat. Symposium on Magnetism. Part 2. Moscow, 1999. P. 209–212.
- [4] Гилинский И.А., Минц Р.Г. // ЖЭТФ. 1970. Т. 59. № 10. С. 1230–1236.
- [5] *Вилков Е.А.* // Письма в ЖТФ. 2000. Т. 26. В. 20. С. 28–33.