06;12

Изменение микроморфологии поверхности эпитаксиальных слоев кремния на сапфире при облучении рентгеновским излучением "допороговых" энергий

© А.Н. Киселев, В.А. Перевощиков, В.Д. Скупов, Д.О. Филатов

Нижегородский государственный университет им. Н.И. Лобачевского E-mail: spm@phys.unn.runnet.ru

Поступило в Редакцию 21 марта 2001 г.

Методом атомно-силовой микроскопии обнаружено изменение микрорельефа поверхности гетероэпитаксиальных пленок кремния на сапфире (КНС) после импульсного облучения рентгеновскими лучами с энергией $E \leq 140$ keV.

Проблема повышения стойкости полупроводниковых приборов к действию внешних дестабилизирующих факторов (температура, радиация, давление) — одна из актуальных в современной микроэлектронике. Среди различных путей ее решения центральным является применение структур "кремний на диэлектрике" в качестве основы для создания интегральных схем в тонком приборном слое кремния на монокристаллических (сапфир, шпинель и др.) или аморфных (SiO₂, Si₃N₄) диэлектриках. Наибольшее распространение для изготовления специальных микросхем средней степени интеграции получили структуры "кремний на сапфире" (КНС). Вместе с тем гетероэпитаксиальный характер приборных слоев композиций КНС обусловливает высокий уровень остаточных напряжений и структурных дефектов в них, что может служить причиной развития процессов старения и деградации параметров приборов [1]. Причем эти явления могут протекать при облучении структур излучениями как с надпороговыми, так и с допороговыми энергиями [2,3]. Последний случай наиболее интересен, поскольку практически не изучен, но важен для понимания природы деградационных процессов при низкоэнергетических радиационных воздействиях.

35

Цель настоящей работы состояла в исследовании методом атомносиловой микроскопии (ACM) на сканирующем зондовом микроскопе TMX-2100 "Accurex" в режиме Non-Contact AFM морфологии поверхности пленок *n*-Si (001) толщиной 0.6 μ m, выращенных пиролизом моносилана на подложках α -Al₂O₃ (0112) толщиной 540 μ m до и после рентгеновского облучения. Структуры облучались со стороны пленок рентгеновским излучением сплошного спектра с $E_{max} \leq 140 \text{ keV}$ в импульсном режиме. Длительность одного импульса $\Delta t_r = 150 \text{ ns}$, эспозиционная доза в импульсе 0.142 \div 0.162 R, а суммарная доза облучения составляла (1.52 \pm 0.46) R.

Эксперименты показали, что наличие на исходных кремниевых пленках слоя естественного оксида искажает топографию поверхности, увеличивая высоту отдельных микронеровностей до 50 nm при средней шероховатости до 8 nm. При этом во впадинах диоксида кремния обнаружены "столбчатые" образования, предположительно микровключения монокристаллического SiO₂. Удаление диоксида кремния во фтористоводородной кислоте уменьшает высоту максимальных микронеровностей до 30 nm, а шероховатость поверхности до 5 nm. Заметным образом изменяется и гистограмма распределения латеральных размеров микрорельефа (рис. 1, b), которая по форме приближается к гауссовской. После рентгеновского облучения спектр распределения латеральных размеров микрорельефа пленок сдвигается в сторону меньших значений и по виду становится близким к распределению Пуассона. Максимальная высота микронеровностей поверхности достигает 40 nm, а среднее значение шероховатости $\sim 7 \,\mathrm{nm}$ (рис. 1, *c*). В отдельных локальных областях кремниевых пленок облученных структур были обнаружены островки размером $0.1 \div 0.3 \,\mu m$ с планарной ориентацией [111] (рис. 2).

Дополнительно к атомно-силовой микроскопии были проведены эллипсометрические исследования кремниевых пленок на эллипсометре ЛЭФ-601 ($\lambda = 0.63 \,\mu$ m), в результате которых установлено, что после рентгеновского облучения показатель преломления их увеличивается от $n_0 = 2.331$ до n = 3.821, а коэффициент экстинкции уменьшается от $k_0 = 3.006$ до k = 1.770. Одновременно уменьшаются более чем на порядок величины дисперсии обоих параметров. Изменения n и k происходят не только при облучении, но и после его прекращения при хранении структур в нормальных условиях в течение месяца.

Полученные результаты можно объяснить изменениями микроморфологии поверхности пленок вследствие перестройки их дислокационной структуры (плотность дислокаций в гетерослоях может достигать

Рис. 1. Микротопографии и гистограммы распределения латеральных размеров микрорельефа поверхности кремния структур КНС в исходном состоянии (*a*), после удаления диоксида кремния (*b*) и после рентгеновского облучения (*c*).

 $10^9 \div 10^{10} \text{ cm}^{-2}$ [1]) под действием упругих волн. Последние возникают в сапфировой подложке за счет кулоновского отталкивания положительно заряженных ионов алюминия и ионизированных рентгеновским излучением атомов кислорода. Амплитуду давления в упругой волне от одного

Рис. 2. Микротопография поверхности (001) облученной пленки кремния с островками, имеющими ориентацию [111].

центра излучения можно оценить из выражения [4]:

$$P_0 = \frac{q_1 \cdot q_2 \cdot e^2}{4\pi\varepsilon_0\varepsilon d^4},$$

где q_1, q_2 — кратность ионизации соседних ионов; e — заряд электрона; $\varepsilon_0, \varepsilon$ — диэлектрические константы вакуума и материала подложки; d — расстояние между ионами. Пренебрегая поглощением волн в компонентах структур и учитывая только волны, генерируемые в сапфире вблизи границы раздела с кремнием, для суммарной амплитуды давления от j источника можно записать [5]:

$$P = P_0 R[2\pi j\tau_i]^{1/2} = P_0 R[2\pi \tau_i \sigma_i N_0 W D R]^{1/2}$$

где $R = \tau_i \cdot c$ — размер области синхронного излучения группы волн в течение времени релаксации электронного возбуждения на "выделенной" паре ионов τ_i [4] (c — скорость света); σ_i — сечение ионизации

i-й оболочки атомов кислорода (для *k*-оболочки $\sigma \simeq 10^{-18} \text{ cm}^2$); N_0 — число атомов в единице объема; W — вероятность ионизации *i*-го уровня ($W \simeq \exp\{-\frac{E_i}{E_0}\}$; E_i , E_0 — энергия ионизации *i*-го уровня и энергия первичного излучения); D — плотность потока первичного излучения, равная для рентгеновских лучей с $E_0 \leq 2$ MeV, согласно [6]:

$$D = \frac{1.9 \cdot 10^9}{\Delta t_r E_0} \Big[\frac{\text{quanta}}{\text{cm}^2 \cdot \text{s}} \Big].$$

Расчеты, выполненные для указанных выше режимов облучения и для случая ионизации *k*-оболочки кислорода ($E_k = 0.532 \text{ keV}$), дают эффективную амплитуду волн в кремниевой пленке $P \cong 6 \text{ MPa}$. Действие такого давления в тонких слоях с сильно развитой субструктурой может приводить к консервативной и неконсервативной перестройке дислокаций, и в частности к образованию скоплений 60°-ных дислокаций на гранях {111} октаэдра {001} вблизи поверхности пленок в местах локально высоких исходных упругих напряжений. Видимо, именно такие скопления и создаваемые ими микротрещины наблюдаются на атомносиловых топограммах поверхности гетерослоев в виде островков с ориентацией [111].

Список литературы

- [1] Папков В.С., Цыбульников М.Б. Эпитаксиальные кремниевые слои на диэлектрических подложках и приборы на их основе. М.: Энергия, 1979. 88 с.
- [2] Адонин А.С., Беспалов А.В., Китиченко Т.С. и др. // Микроэлектроника. 2000. Т. 29. № 4. С. 279–295.
- [3] Оболенский С.В., Скупов В.Д. // Поверхность. 2000. № 5. С. 75-79.
- [4] Клингер М.И., Лущик Ч.Б., Машовец Т.В. и др. // УФН. 1985. Т. 147. В. 3. С. 523–558.
- [5] Павлов П.В., Семин Ю.А., Скупов В.Д. // ФТП. 1986. Т. 20. В. 3. С. 503-507.
- [6] Винецкий В.Л., Холодарь Г.А. Радиационная физика полупроводников. Киев: Наук. думка, 1979. 336 с.