03;07;08

Режимы течения с подводом энергии пульсирующего лазерного излучения в сверхзвуковой поток

© В.И. Яковлев

Институт теоретической и прикладной механики СО РАН, Новосибирск E-mail: yakovlvi@itam.nsc.ru

Поступило в Редакцию 26 февраля 2001 г.

Проведен сравнительный анализ режимов течения газа за областью энергоподвода в сверхзвуковом потоке, которые определяются условиями фокусировки лазерного излучения. Установленная взаимосвязь энергетических и газодинамических параметров позволила определить существенное отличие параметров течения (скорость, давление торможения) за протяженным и точечным плазменным теплоисточником при одинаковых начальных условиях в диапазоне чисел Маха сверхзвукового потока M=1.5–10.

В [1,2] показано, что при формировании в сверхзвуковом потоке газа протяженной области оптического пробоя параметры течения (в тепловом следе) определяются динамикой лазерной плазмы. Этот режим течения возможен при условии значительной протяженности плазмы пробоя l относительно его диаметра d, что определяется соответствующей фокусировкой излучения. Однако в случае $l \approx d$ из-за отсутствия условия поддержания лазерной волны детонации характер процессов существенно изменяется и соответствует условию мгновенного локализованного выделения энергии. Такое условие использовалось в численных исследованиях [3-6] взаимосвязи пространственно-временных энергетических параметров теплоисточника со структурой течения в его окрестности и при обтекании тел. Также аналитическая модель сильного точечного взрыва использовалась для расчетного определения требуемой конфигурации ударной волны, которая может быть вызвана серией лазерных импульсов [7]. Как показано ниже, возможности аналитического подхода в рамках данной модели можно существенно расширить и кроме характерных масштабов оценить газодинамические параметры в их взаимосвязи с энергетическими, используя обобщенные

29

данные расчетных исследований течения после взрыва с учетом влияния противодавления в широком диапазоне условий [8,9].

Целью представленной работы является анализ структуры квазистационарного течения в сверхзвуковом потоке с пульсирующим лазерным пробоем при короткой фокусировке луча (на основе модели точечного взрыва) и оценка параметров среды за областью пробоя в зависимости от энергетических характеристик излучения и скорости (числа Маха) потока. Для выявления характерных особенностей режима течения с мгновенным выделением энергии проводится его сравнительный анализ с данными для модели [1,2], учитывающей конечную (хотя и высокую) скорость энергоподвода за фронтом светодетонационной волны (модель протяженного источника) при тех же значениях средней мощности лазерного излучения и начальных условиях эксперимента.

Измеренная средняя мощность поглощенного лазерного излучения (равная произведению энергии импульса и частоте их следования f) составляет $N = 1.6 \,\mathrm{kW}$ при $f = 100 \,\mathrm{kHz}$. Предполагается, что в отличие от модели протяженного источника поглощение энергии происходит мгновенно в точке фокусировки излучения, т.е. выполняются основные условия модели точечного взрыва. Предполагая также частоту достаточной для формирования квазистационарного течения (это условие дано ниже), определяется исходный энергетический параметр (энергия на единицу длины) $E^0 = N/u_{\infty}$, где u_{∞} — скорость потока. В результате определяются пространственно-временные масштабы точечного взрыва с цилиндрической симметрией: $r^0 = (E^0/P_{\infty})^{1/2}$ и $t^0 = r^0 (\rho_\infty/\dot{P}_\infty)^{1/2}$, равные 8.4 mm и 54 μ s для условий эксперимента с $E^0 = 4 \text{ J/m}$. В расчетном анализе для определения радиального распределения параметров в различные моменты времени после взрыва использованы табличные данные [8] для газодинамических параметров, представленные в зависимости от безразмерных переменных ξ и q, где $\xi = (r_i/r_n)^2$, r_i и r_n — радиусы выбранных точек и ударной волны; $q = (a_{\infty}/c)^2$, a_{∞} и c — скорости звука в набегающем потоке и ударной волны соответственно. Для фиксированного расстояния х от точки взрыва (фокусировки) $t = x/u_{\infty}$ и безразмерный параметр t/t^0 определяет величину q.

На рис. 1, *а* представлено относительное изменение давления P_0/P_{∞} , скорости звука a_0/a_{∞} и радиальной скорости (разлета) среды v_0/a_{∞} (1, 2 для значений эффективного показателя адиабаты γ 1.3 и 1.67) в центральной части потока при увеличении q (удалении от точки

Рис. 1. Газодинамические параметры течения в центре (a) и волновая структура в окрестности (b) области подвода энергии в сверхзвуковом потоке $M_{\infty} = 2$ в зависимости от расстояния (параметра q) от точки взрыва (фокусировки излучения).

взрыва). Там же показаны диапазоны изменения q для чисел Маха потока $M_{\infty} = 2$ и 10 в интервале x = 5-30 mm. Общим свойством этих решений является установление при q более 0.35 практически

постоянных уровней: $P_0/P_{\infty} \cong 1$, $a_0/a_{\infty} \cong 5$ и $v_0/a_{\infty} \cong 0$ с относительным отклонением (и изменением знака скорости для q в диапазоне 0.6–0.8) не более нескольких процентов. Изобарическое течение с установившимися параметрами определяется координатой $x^* = u_{\infty}(t/t^0)t^0$ (где $t/t^0 \cong 0.11-0.13$ при q = 0.35 в зависимости от γ).

Радиальные профили относительной плотности ρ/ρ_n ($\gamma = 1.3$ и для других γ аналогичный вид) для двух фиксированных значений q = 0.6 и 0.8 (x = 7.6 и 24.4 mm соответственно) представлены на рис. 1, *b* в дополнение к расчетной конфигурации ударной волны $r_n(I, 2)$ и результатам экспериментов [1,2] в потоке аргона $M_{\infty} = 2$. Там же обозначен уровень плотности в невозмущенном потоке ρ_{∞} . Характер распределения этого параметра позволяет оценить его среднее значение в центральной области величиной $\rho_0 \cong 0.03-0.04\rho_{\infty}$ (а также скорость звука $a_0 \cong 5a_{\infty}$) в ближней к оси расчетной точке r_0 , устраняя таким образом особенность решения модели точечного взрыва при r = 0. Этот выбор оправдан также тем, что, согласно проведенным оценкам, пространственный масштаб процессов тепломассопереноса в высокотемпературном аргоне близок к величине r_0 .

Внутренняя и внешняя граница характерной области низкой плотности (и высокой температуры) представлены на рис. 1, *b* линиями r_0 и r_1 ниже оси *Ox*. Первая остается с ростом *x* практически постоянной (r_0 не более 0.9–1.2 mm), а радиус внешней границы заметно (в несколько раз) возрастает, показывая расширение области почти постоянного градиента плотности. Это отличает рассматриваемый процесс от энерговыделения за фронтом светодетонационной волны, где граница теплового следа (линия *3*) является слабым скачком, разделяющим скоростной плазменный поток от основного [2].

Зависимость параметров течения от мощности N проявляется во взаимосвязи E^0 , r^0 и t^0 , показывающей их увеличение как $N^{1/2}$. При этом уменьшаются t/t^0 , q и увеличиваются радиус ударной волны и газодинамические параметры. На рис. 1, b также показано (стрелками $10E^0$) изменение r_0 , r_1 и r_n при десятикратном увеличении мощности. Наиболее заметно (в 2.5–3 раза) увеличивается r_0 и менее всего радиус ударной волны. Таким образом, эффект повышения мощности проявляется в увеличении размеров области низкой плотности при более раннем достижении установившихся (q более 0.35) параметров течения.

Условие квазистационарности для мгновенного энергоподвода приобретает вид $u_{\infty}/f - r_0$ (или r_1 , что в нашем случае составляет

Рис. 2. Скоростные параметры течения (число Маха M_0 , относительная величина давления торможения) за областью подвода энергии в сверхзвуковом потоке с M_{∞} (1, 2 — модель точечного взрыва, 3 — модель протяженного источника).

меньше 1 mm), соответственно частота более 400 kHz. В сравнении с протяженным источником, для которого $u_{\infty}/f \sim l$, при короткой фокусировке луча требуется более высокая частота. При менее жестком условии $u_{\infty}/f \sim r_n$ (следует использовать решение со сферической симметрией) величина f снижается в несколько раз, но в этом случае возрастает неоднородность распределения параметров. В обоих режимах энергоподвода требуемая частота увеличивается с ростом скорости (числа Маха) потока.

Для определения средних значений скоростных характеристик квазистационарного течения (числа Маха, а также давления торможения) используется общее свойство решения для скорости разлета среды в центральной области взрыва: $v/a_{\infty} \cong 0$. Это означает, что в области изобарического течения средняя осевая скорость среды u_0 в центре потока (радиусом r_0) близка к скорости набегающего потока, т. е $u_0 \cong u_{\infty} = M_{\infty}a_{\infty}$. Скорость звука в этих условиях приобретает (рис. 1, *a*) практически постоянное значение $a_0 = Ka_{\infty}$ с коэффициентом $K \cong 5$ (в пределах 10% для разных γ). В результате определяется число Маха в центральной области потока: $M_0 = M_{\infty}/K \cong M_{\infty}/5$. На рис. 2 этот результат (1, 2) представлен в сравнении с данными (3), полученными для модели протяженного источника с аналогичными

начальными условиями и средней мощностью излучения также в точке выполнения условия изобаричности. Эти данные показывают, что в диапазоне $M_\infty=1{-}10$ число Маха потока за областью энергоподвода всегда меньше, чем в основном потоке, наименьшее в режиме взрыва, для которого при M_∞ менее 5 течение дозвуковое.

Из известной взаимосвязи газодинамических параметров в потоке определено и также представлено на рис. 2 относительное изменение давления торможения $(P_0/P_\infty)^*$ для обоих квазистационарных режимов подвода энергии. Впервые показано, что при равной средней мощности излучения параметры торможения существенно различаются (при короткой фокусировке ниже в три раза при малых M_{∞}) при общем их значительном (более чем на порядок величины) снижении с увеличением числа Маха набегающего потока. Установленное при этом снижение темпа изменения величины $(P_0/P_\infty)^*$ при больших M_∞ означает, что эффекты энергоподвода (например, при обтекании тел) будут при прочих равных условиях слабо изменяться в скоростном диапазоне от $M_{\infty} \cong 5$. Кроме того, поскольку интегральные эффекты подвода энергии определяются также соотношением поперечных размеров обтекаемых тел и области с существенным изменением параметров (радиусом не более r_1), эти эффекты усиливаются с увеличением мощности только до определенных пределов, определяемых соотношением указанных размеров.

Список литературы

- [1] Третьяков П.К., Яковлев В.И. // ДАН. 1999. Т. 365. № 1. С. 58–60
- [2] Yakovlev V.I. // Int. Conf. on the Methods of Aerophys. Research: Proc. Pt 3. Novosibirsk-Tomsk, Russia, 9–16 July, 2000. P. 139–145; а также Яковлев В.И. // Письма в ЖТФ. 2001. Т. 27. В. 9. С. 13–19.
- [3] Георгиевский П.Ю., Левин В.А. // Письма в ЖТФ. 1988. Т. 14. В. 8. С. 684– 687.
- [4] Гувернюк С.В., Самойлов А.Б. // Письма в ЖТФ. 1997. Т. 23. В. 9. С. 1–8.
- [5] Korotaeva N.A., Shashkin A.P. // Int. Conf. on the Methods of Aerophys. Research: Proc. Pt 2. Novosibirsk–Tomsk, Russia, 9–16 July, 2000. P. 100–105.
- [6] Zudov V.N. // Int. Conf. on the Methods of Aerophys. Research: Proc. Pt 3. Novosibirsk–Tomsk, Russia 9–16 July, 2000. P. 162–167.
- [7] Myrabo L.N., Raizer Yu. P. AIAA Paper N 94-2451. 1994.
- [8] Коробейников В.П., Чушкин П.И., Шароватова К.В. Газодинамические функции точечного взрыва. М.: ВЦ АН СССР, 1969. 47 с.
- [9] Коробейников В.П. Задачи теории точечного взрыва. М.: Наука, 1985.