06;12

Твердофазные взаимодействия в контактных структурах на основе TiB_x–GaAs, подвергнутых быстрым термическим отжигам

© В.В. Миленин, Р.В. Конакова

Институт физики полупроводников НАН Украины, Киев

Поступило в Редакцию 13 февраля 2001 г.

Исследованы межфазные взаимодействия в исходных и отожженных в вакууме при $T = 500^{\circ}$ С в течение 1 h контактах TiB_x-GaAs. Обнаружено, что термообработка приводит к трансформации структуры переходного слоя, включающего в свой состав тернарные фазы B_xGa_{1-x}As и Ti_xGa_{1-x}As. Предложен физический механизм наблюдаемых структурных превращений.

Все возрастающие требования к повышению стабильности параметров контактов металл-GaAs, эксплуатирующихся в условиях повышенных температур, привели к необходимости поиска новых материалов для создания барьерных слоев. Моноэлементная металлизация не обеспечивает решение сформированной выше задачи, так как практически все металлы реагируют с подложкой GaAs в процессе ее нагрева [1]. Образующиеся на межфазной границе в условиях сильного отклонения контактной структуры от термодинамического равновесия продукты реакции, представляющие двух- и трехкомпонентные фазы, являются, как правило, не стабильными. Их конверсия или распад приводят к деградации электрофизических параметров контакта. Представляется перспективным для повышения термостабильности контакта металлполупроводник использовать в качестве барьерообразующих слоев соединения металлов, структурой которых можно управлять в широких пределах. К числу таких материалов относятся пленки ТіВ_x, сочетающие высокую химическую и термическую стойкость с электропроводностью, приближающейся к "чистым" металлам.

Возможности использования TiB_x в системах металлизации для CBЧ приборов на основе GaAs и посвящена данная работа.

30

Объектами исследования являлись структуры $TiB_x - n - n^+$ -GaAs. TiB_x толщиной ~ 500 Å получен методом магнетронного распыления из прессованной порошковой мишени [2].

Концентрация легирующей примеси в *n*-пленке GaAs составляла 10^{16} cm⁻³, толщина *n*-слоя была ~ 5 μ m. Концентрация легирующей примеси в *n*⁺-подложке GaAs не превышала $2 \cdot 10^{18}$ cm⁻³, толщина подложки была ~ 300 μ m. Структуры подвергались термическому отжигу в вакууме ~ 10^{-6} mm Hg при $T = 500^{\circ}$ C в течение 1 h.

Межфазные взаимодействия в контактах анализировались методами Оже-электронной спектроскопии (ОЭС) и масспектрометрии вторичных ионов (ВИМС).

До и после термообработки измерялись вольт-амперные характеристики (BAX).

На рис. 1 представлены атомные профили контакта TiB_x -GaAs до и после отжига ($T = 500^{\circ}$ C, t = 1 h), полученные с помощью послойной ОЭС.

Как следует из полученных результатов напыленные слои боридов имеют состав близкий к TiB_2 и содержат достаточно малое количество кислорода. Ранее нами были исследованы деградационные процессы в контактах на основе квазиаморфного борида титана с высоким содержанием кислорода [2,3]. Как было показано, их термическая деградация обусловлена структурно-химической перестройкой в напыленных слоях TiB_x , доминирующую роль в которой играли фазы переменного состава на основе Ti-B-O.

В данных объектах последствия термического отжига существенно отличаются от наблюдаемых в [3]. Действительно, как следует из рис. 1 геометрические размеры и атомный состав переходного слоя (ПС) после отжига такие же, как в исходных структурах.

Вместе с тем, наблюдаемые перестройки в структуре атомных профилей компонент контакта пары указывают на возможность трансформации фазового состава в ПС после термообработки.

Анализ фазового состава ПС контакта до и после отжига был выполнен с помощью ВИМС. На рис. 2 представлены изменения интенсивности тока многоатомных ионов по глубине ПС.

Обращает на себя внимание присутствие в спектрах вторичных токов компонент с атомными массами 155 и 192, которые идентифицируются нами как соответствующие тернарным фазам $B_xGa_{1-x}As$ и $Ti_xGa_{1-x}As$. Причем отжиг приводит к уменьшению содержание фазы $B_xGa_{1-x}As$

Рис. 1. Профили распределения компонент в контактах TiB_x -GaAs до (*a*) и после отжига (*b*).

и резкому возрастанию Ti_xGa_{1-x}As за счет термостимулированного усиления реакций в приконтактной области GaAs.

Образование твердого раствора $B_xGa_{1-x}As$ на начальных стадиях роста пленки борида титана и его поведение при отжигах анализировались нами ранее [2,3].

Рис. 2. Зависимости интенсивности токов вторичных многоатомных ионов по глубине ПС до (a) и после (b) отжига: 1 — GaAs; 2 — Ga_xB_{1-x}As; 3 — Ti_xGa_{1-x}As.

Остановимся более детально на образовании тернарной фазы, $Ti_xGa_{1-x}As$, возникновение которой в условиях формирования контактной структуры, по-видимому, нами наблюдалось впервые.

Межфазные реакции в контактах Ti–GaAs, в том числе и при повышенных температурах, исследованы достаточно подробно [4–6]. Было показано, что в температурном диапазоне $380-500^{\circ}$ С идет интенсивное взаимодействие Ti с полупроводником, результатом которого является формирование многофазного ПС. При температурах отжига 480° С он состоит из фаз TiAs и Ti₂Ga₃, которые с повышением температуры конвертируются в Ti₅As₃, и Ti₅Ga₄. Соединения с мышьяком возникают на исходной границе Ti–GaAs, в то же время интерметаллические фазы Ga растут по фронту арсенидов. Никаких тернарных фаз не было выявлено. По-видимому, маловероятно и образование твердых растворов в системе Ti–GaAs, учитывая резкое несоответствие электронной структуры компонент гетеропары и различие их атомных радиусов [7].

Поэтому для объяснения полученных результатов следует допустить возможность формирования твердых растворов на основе интерметаллических соединений, что позволяет снять геометрические и электрохимические ограничения для их образования [7].

Таким образом, следует предположить следующий механизм формирования ПС контакта. В исходной структуре на межфазной границе контакта сформирован тонкий слой твердого раствора $B_xGa_{1-x}As$, под которым находятся зародыши фаз Ti-As и Ti-Ga докритического размера. Образовавшиеся зародыши, находящиеся в условиях резкого градиента химического потенциала, нестабильны, а их рост связан с повышением свободной энергии. Дальнейшая их эволюция обусловлена взаимодействием между ними. Термодинамически выгодно подавить развитие зародышей (докритических размеров) путем слияния их с образованием тернарной фазы с последующим увеличением ее объема. Если в результате столкновительных процессов образуется агрегат с радиусом больше критического, например путем слияния докритических зародышей фаз Ti-As и Ti-Ga с образованием зародыша тернарной фазы закритического размера, термодинамические ограничения на ее рост снимаются. Повышение температуры интенсифицирует этот процесс. Рассмотренная картина формирования ПС не означает, что не возможен рост наряду с тернарным твердым раствором какой-либо из бинарных фаз, так как в силу флуктуационных процессов они могут достигать критического размера.

Проанализированные выше данные свидетельствуют о достаточно высокой термостабильности границы раздела TiB_x-GaAs, что указывает на возможность создания термостойкого диода с барьером Шоттки.

Исследование ВАХ диодных структур TiB_x -GaAs до и после отжига показало, что как в исходных, так и в отожженных диодах высота барьера Шоттки φ_B остается неизменной и равной 0.78 \pm 0.02 eV, а фактор идеальности в диодах после отжига, рассчитанный из прямой ветви ВАХ, даже улучшается и становится равным 1.15 вместо 1.2 в исходных. При этом в отожженных образцах значительно уменьшается величина обратного тока.

Список литературы

- [1] Венгер Е.Ф., Конакова Р.В., Коротченков Г.С., Миленин В.В., Руссу Э.В., Прокопенко И.В. Межфазные взаимодействия и механизмы деградации в структурах металл–InP и металл–GaAs. Киев: КТНК, 1999. 233 с.
- [2] Ермолович И.Б., Конакова Р.В., Миленин В.В., Сенкевич А.И. // Письма в ЖТФ. 1999. Т. 25. В. 19. С. 71–76.
- [3] Венгер Е.Ф., Миленин В.В., Ермолович И.Б., Конакова Р.В., Иванов В.Н., Войциховский Д.И. // ФТП. 1999. Т. 33. В. 8. С. 948–953.
- [4] Wada O., Yanagisawa S., Takanashi H. // Appl. Phys. Letters. 1976. V. 29. N 4. P. 263–265.
- [5] MaCants C.E., Kendelewicz T., Mahowald P.H., Bertness R.A., Williams M.D., Newman N., Lindau I., Spicer W.E. // J. Vac. Sci. Technol. A. 1988. V. 6. N 3. P. 1466–1472.
- [6] Ki Bum Kim, Kniffin M., Sinclair R., Helms C.R. // J. Vac. Sci. Technol. A. 1988. V. 6. N 3. P. 1473–1477.
- [7] Ормонт Б.Ф. Введение в физическую химию и кристаллохимию полупроводников. М.: Высшая школа, 1968. 488 с.