05:06:12

Влияние имплантации He⁺, O⁺, B⁺, Cd⁺ на структуру поверхности подложек из оксида магния для пленок ВТСП

© Ю.М. Яковлев, Г.А. Николайчук, Н.М. Шибанова, Т.А. Крылова, Л.А. Калюжная, В.В. Петухова Научно-исследовательский институт "Домен", 196084 Санкт-Петербург, Россия

(Поступило в Редакцию 13 октября 2000 г.)

Экспериментально исследовано изменение структуры и морфологии поверхности полированной подложки из оксида магния MgO (100) в зависимости от проводимых обработок, включающих ионную имплантацию и лазерный отжиг. Сочетание ионной имплантации с последующим лазерным отжигом изменяют структуру поверхности подложки MgO (100), создавая монокристаллический поверхностный слой. Согласно электронографическим исследованиям сплошной монокристаллический слой получен только при имплантации ионами Cd⁺.

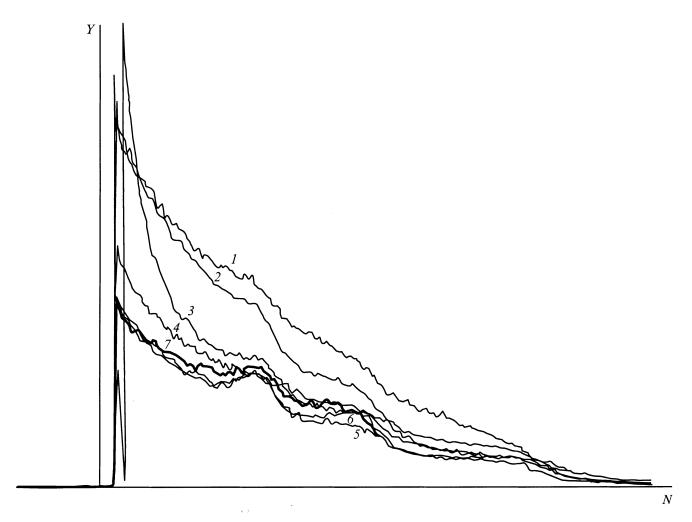
Введение

Одним из основных материалов современной криоэлектроники является высокотемпературный сверхпроводник $YBa_2Cu_3O_{7-\delta}$. Он обычно применяется в виде тонких пленок на диэлектрических подложках [1] или гетероструктур $YBa_2Cu_3O_{7-\delta}/MgO(100)$. Качество гетероструктур зависит как от технологии получения сверхпроводящего слоя, так и от степени совершенства диэлектрической подложки. В частности, подложкам, изготовленным методами доводочного шлифования и последующего химико-механического полирования, свойственна неплоскостность, которая отрицательно влияет на характеристики приборов на основе структур иттрий-железный гранат-сверхпроводник [2]. Поэтому изменение структуры нарушенного приповерхностного слоя подложек MgO (100) путем максимального его приближения к свойствам самого материала другими, альтернативными химико-механическому полированию способами, должно иметь не только научный, но и практический интерес. В данной работе проведены исследования влияния ионной имплантации и лазерного отжига на структуру и морфологию поверхности подложек MgO (100).

Образцы и эксперимент

Подложки из монокристаллов оксида магния MgO (100) изготавливались традиционными способами механической резки, доводочного шлифования и последующего механического полирования, которое выполнялось алмазным порошком зернистостью не более $0.5\,\mu\mathrm{m}$ и заканчивалось при получении свободной от царапин поверхности с шероховатостью $R_z \leq 0.05\,\mu\mathrm{m}$. Угол разориентации поверхности подложки относительно кристаллографической плоскости (100) не превышал 1° . Наши исследования показали, что в приповерхностном слое возникали разориентированные области и слой приобретал квазиполикристаллическое строение.

Имплантация проводилась ионами-имплантантами ${
m He^+,\,O^+,\,Cd^+,\,B^+}$ с энергиями $E=50{-}300$ keV, дозами


 $D=10^{13}-1\cdot 10^{16}~{\rm cm}^{-2}$. Подложки как сразу после механического полирования, так и после имплантации подвергались лазерному отжигу. Лазерный отжиг проводился лазером с длиной волны когерентного излучения $10.6~\mu m$, мощностью $25~{\rm W}$.

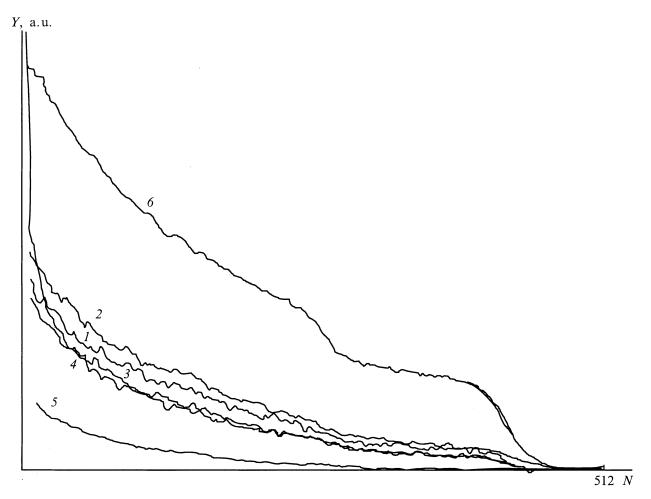
Структура поверхности исходных полированных подложек оксида магния MgO(100), степень ее радиационного повреждения, внесенного имплантацией, структура поверхности подложек после рекристаллизации исследовались методом резерфордовского обратного рассеяния ионов $\mathrm{He^+}$ ($E_0=860\,\mathrm{keV},\,\Theta=165^\circ$) с использованием режима каналирования. Спектры в режиме каналирования были получены, когда анализируемый пучок был параллелен направлению $\langle 100 \rangle$. Кроме того, тип структуры поверхностного слоя определялся методом рентгеноструктурного анализа (ДРОН-2, CuK_α -излучение) и электронографии на отражение в электронном микроскопе с дифракционной приставкой. Поверхностный слой по своей структуре может быть аморфным, поликристаллическим и монокристаллическим.

Как известно, на электронограммах аморфные слои не дают хорошо обозначенных дифракционных колец. Поликристаллические слои дают четкие дифракционные кольца. На электронограммах от монокристаллических поверхностей появляются симметрично расположенные пятна — монокристаллические рефлексы.

Были проведены исследования кристаллической структуры поверхностного слоя полированных подложек MgO (100), прошедших различную технологическую обработку: 1) исходная подложка (после механического полирования); 2) исходная подложка, подвергшаяся лазерному отжигу; 3) исходная подложка (после имплантации); 4) имплантированная подложка после лазерного отжига.

Одним из критериев качества поверхности подложек являются сверхпроводящие свойства пленок ВТСП, синтезированных на них. Пленки ВТСП состава $YBa_2Cu_3O_{7-\delta}$ были получены на подложках MgO (100) с различной предысторией методом пиролиза керамической шихты с органическим связующим. Керамическая шихта синтезировалась из растворов нитратов иттрия, бария и меди химическим методом [3]. Для полученных

Рис. 1. Энергетические спектры РОР в режиме каналирования ионов He⁺ с энергией $E_0 = 860$ keV монокристаллических подложек MgO (100): I — случайный спектр; 2-6 — после имплантации ионами He⁺ с энергией 100 keV и дозами $1 \cdot 10^{16}$, $5 \cdot 10^{15}$, $1 \cdot 10^{15}$, $5 \cdot 10^{14}$, $1 \cdot 10^{14}$ cm⁻² соответственно; 7 — от исходной подложки. Y — выход обратного рассеяния, N — номер канала.


образцов были измерены температурные зависимости сопротивления R(T) пленок ВТСП в интервале температур 77–300 К. Измерения прводились стандартным четырехконтактным методом при постоянном токе $100~\mu m$.

Результаты модификации поверхности подложек ионной имплантацией и лазерным отжигом

а) Имплантация $\mathrm{He^+}$. На рис. 1 приведены спектры резерфордовского обратного рассеяния для подложек, облученных различными дозами ионов $\mathrm{He^+}$ с энергией $100\,\mathrm{keV}$. В режиме каналирования спектр 7 для исходного образца практически не отличался от спектров образцов, имплантированных дозами $1\cdot 10^{15}$, $5\cdot 10^{15}$ (спектры 3,4) и $1\cdot 10^{16}\,\mathrm{cm^{-2}}$ (спектр 2) — степень повреждения нарушенного при механическом полировании поверхностного слоя материала толщиной $0.28\,\mu\mathrm{m}$ практически не изменялась. На больших глубинах (порядка $0.28\,\mu\mathrm{m}$) наблюдались небольшие

по сравнению с аморфизацией повреждения. Слабое влияние величины дозы при имплантации ${\rm He^+}$ на тип структуры поверхностного слоя подложки MgO (100) подтверждается слабым изменением сверхпроводящих свойств пленок, нанесенных на эти подложки. Электросопротивление при комнатной температуре изменялось в интервале $0.7{-}0.8\,\Omega$, температура завершения перехода в сверхпроводящее состояние — в интервале $77{-}79\,{\rm K}$.

Следует отметить, что спектры, полученные в разных точках поверхности подложек, несколько различаются (рис. 2). Это может быть объяснено наличием блоков и их разориентацией, характерных для монокристаллического оксида магния, что подтверждается рентгеноструктурными исследованиями (рис. 3). При этом масштаб неоднородности соизмерим с размером анализирующего пучка (порядка 1 mm^2). При фиксированной величине дозы $10^{14}\,\mathrm{cm}^{-2}$ увеличение энергии в интервале $50-300\,\mathrm{keV}$, согласно электронографическим исследованиям, не привело к изменению степени дефектности нарушенного слоя. Полученные результаты позволяют утверждать, что вследствие малой массы ионы гелия

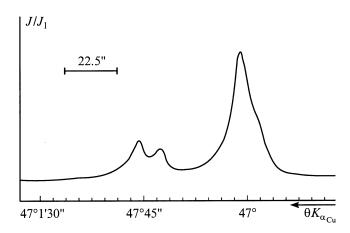


Рис. 2. Энергетические спектры POP в режиме каналирования ионов He^+ с энергией $E_0 = 860 \,\mathrm{keV}$ подложек MgO (100) с поликристаллическим характером структуры нарушенного поверхностного слоя (I-4) и монокристаллическим поверхностным слоем (5), 6 — случайный.

не могут создавать поверхностные слои с характером структуры, близким к аморфному. Электронографические исследования показали, что лазерный отжиг как исходных, так и имплантированных ионом гелия подложек не изменил поликристаллического характера структуры поверхности подложек MgO (100).

- б) Имплантация O^+ . Электронографические исследования подложек, имплантированных O^+ ($E=100\,\mathrm{keV},\,5\cdot10^{13}\leqslant D\leqslant10^{15}\,\mathrm{cm}^{-2}$), свидетельствуют о получении поверхностных слоев со структурой, близкой к аморфной. На электронограммах же, полученных с подложек, подвергшихся ионной имплантации O^+ с последующим лазерным отжигом, наблюдаются рефлексы, подтверждающие монокристаллическую структуру поверхностного слоя.
- в) Имплантация B^+ и Cd^+ . Приведенная выше схема обработки подложек использовалась и при исследовании поверхности подложек после имплантации ионами B^+ и Cd^+ в различных режимах. Характер изменения структуры поверхности подложек при имплантации и имплантации с последующим лазерным

отжигом был аналогичен описанному для иона кислорода. Однако следует отметить, что для более тяжелого по массе иона кадмия (имплантация в режиме

Рис. 3. Дифрактограмма монокристаллической подложки MgO (100).

Технология подготовки подложки		Гемпература эхпроводящее	перехода е состояние, К	Электросопротивление, Ω
	T_R	$T_{R=0}$	ΔT_C	
Имплантация B^+ , $E=300\mathrm{keV}$, $D=10^{15}\mathrm{cm}^{-2}$	85	< 77	> 8	1.6
Имплантация ${ m B^+}, E=300{ m keV}, D=10^{15}{ m cm^{-2}}$ с последующим лазерным отжигом	85	83	2	0.3
MgO исходный, контрольный образец	86	77	9	0.84

Влияние характера обработки подложки на сверхпроводящие свойства пленок $YBa_2Cu_3O_{7-\delta}$

 Π р и м е ч а н и е. T_R — температура начала перехода в сверхпроводящее состояние, значение $T_{R=0}$ соответствует нулевому сопротивлению образца, ΔT_C — ширина резистивного перехода.

 $E=200\,\mathrm{keV},\,D=5\cdot10^{15}\,\mathrm{cm^{-2}})$ в отличие от более легких по массе ионов монокристаллические рефлексы наблюдаются по всей поверхности подложки MgO. Островковый характер изменения типа структуры поверхностного слоя по площади подложки при имплантации ионами $\mathrm{B^{+}}$ и $\mathrm{O^{+}}$ вызван, по-видимому, их малой по сравнению с ионами $\mathrm{Cd^{+}}$ массой, так как подобное же изменение типа структуры поверхностного слоя наблюдалось и при имплантации этими ионами подложек иттрий-железного граната [4].

Так как оксид магния плавится при температуре $(2800^{\circ}\mathrm{C})$ выше, чем максимальная температура, обеспечиваемая используемым нами лазером в режиме сканирования $(2000^{\circ}\mathrm{C})$, то можно предположить, что монокристаллический слой образуется путем рекристаллизации в твердой фазе.

г) Свойства пленок $YBa_2Cu_3O_{7-\delta}$ на имплантированных подложках. Было проведено исследование влияния структуры поверхности подложки MgO (100) на электрофизические свойства нанесенных пленок ВТСП, для чего были изготовлены две серии образцов: 1 серия — пленки $YBa_2Cu_3O_{7-\delta}/MgO(100)$, имплантированные B^+ с энергией $300\,\mathrm{keV}$, $D=10^{15}\,\mathrm{cm}^{-2}$; 2 серия — пленки $YBa_2Cu_3O_{7-\delta}/MgO$, имплантированные при тех же режимах, но с последующим лазерным отжигом.

С целью контроля технологического процесса изготовления пленок ВТСП и получения базы сравнения каждая серия содержала контрольные образцы (пленки УВа₂Си₃О₇₋₆, нанесенные на подложки после механического полирования). Они подвергались термообработке вместе с образцами соответствующей серии. Температура начала перехода в сверхпроводящее состояние одинакова для всех образцов. Пленки ВТСП на имплантированных ионами B+, Cd+ и затем отожженных лазером подложках обладают лучшими сверхпроводящими свойствами: выше температура завершения перехода в сверхпроводящее состояние; ниже электросопротивление при комнатной температуре по сравнению с пленками, синтезированными на исходной подложке и имплантированной ионами B+, Cd+, но без отжига подложек. В таблице приведены результаты измерения сверхпроводящих свойств пленок, полученных на подложках, имплантированных B^+ .

Таким образом, показана возможность формирования монокристаллического поверхностного слоя полированной подложки MgO (100) путем применения ионной имплантации с последующим лазерным отжигом. Согласно электронографическим исследованиям, сплошной монокристаллический слой получен только при имплантации ионами Cd⁺.

Список литературы

- [1] *Shen Z.-Y.* High Temperature Superconducting Circuits. Nortwood, MA: Artech house, 1994. 420 p.
- [2] Lutsev L.V., Yakovlev S.V. // J. Appl. Phys. 1998. Vol. 83. N 11. P. 1–3.
- [3] *Николайчук Г.А., Яковлев С.В., Крылова Т.А.* и др. // Неорган. материалы. 1998. Т. 34. № 6. С. 718–721.
- [4] Лебедь Б.М., Яковлев С.В., Николайчук Г.А. и др. // Письма в ЖТФ. 1996. Т. 2. № 10. С. 18–22.