05;07;09 Интерференционные эффекты в рентгеновском излучении релятивистских электронов, движущихся в кристалле под малым углом к атомной плоскости

© Н.Н. Насонов,¹ Г.П. Похил,² А.Ф. Тулинов²

 ¹ Харьковский физико-технический институт, Харьков, Украина
 ² Научно-исследовательский институт ядерной физики Московского государственного университета им. М.В. Ломоносова, 119899 Москва, Россия e-mail:pokhil@anna19.npi.msu.su

(Поступило в Редакцию 26 сентября 1999 г.)

Рассмотрено рентгеновское излучение релятивистских электронов, взаимодействующих с системой параллельных атомных плоскостей кристалла. Установлены и исследованы аномальные свойства излучения, обусловленные интерференцией параметрического и когерентного тормозного механизмов излучения, одновременно проявляющихся в рассматриваемых условиях.

Введение

Сложность и высокая стоимость синхротронов, являющихся в настоящее время основными источниками квазимонохроматического остронаправленного рентгеновского излучения для исследовательских и прикладных целей, обусловливает актуальность поиска альтернативных методов генерации такого излучения. Одно из наиболее перспективных направлений в данной области связано с исследованиями параметрического рентгеновского излучения (ПРИ) релятивистских электронов в кристаллах [1–3], допускающего использование электронных пучков с энергией на один-два порядка меньшей, чем в синхротронах. Энергия квантов ПРИ растет с уменьшением угла ориентации импульса электрона относительно отражающей кристаллографической плоскости (это обстоятельство позволяет понизить энергию электронов). При этом в области углов ориентации, сравнимых с величиной характерного угла излучения релятивистской частицы $\gamma^{-1} = m/\varepsilon$ (*m* и ε — масса и энергия излучающего электрона), становится существенным интерференционный вклад когерентного тормозного излучения электрона (см. теоретическую [4] и экспериментальную [5] работы).

Настоящая работа посвящена детальному теоретическому анализу указанного интерференционного эффекта. В отличие от [4] в работе явно используется малость ориентационного угла, что позволяет существенно продвинуться в описании свойств излучения. В частности, ниже анализируются поляризационные характеристики излучения в условиях интерференции, не исследованные в [4]. Кроме этого, в работе анализируется влияние многократного рассеяния излучающих электронов и рассматривается возможность использования эффекта интерференции для увеличения спектрально-угловой плотности излучения.

Амплитуда излучения

Рассмотрим структуру электромагнитного поля, возбуждаемого релятивистской заряженной частицей с зарядом *q*, движущейся в кристалле. Исходим из уравнения Максвелла

$$(k^{2} - \omega^{2})\mathbf{E}_{\mathbf{k}\omega} - \mathbf{k}(\mathbf{k}, \mathbf{E}_{\mathbf{k}\omega})$$
$$= 4\pi i\omega \left(\mathbf{j}_{\mathbf{k}\omega} + \frac{q}{(2\pi)^{4}} \int dt \mathbf{v}_{q} e^{i\omega t - i\mathbf{k}\mathbf{r}_{q}}\right).$$
(1)

Здесь $\mathbf{E}_{\mathbf{k}\omega}$ — фурье-образ электрического поля, $\mathbf{r}_q(t)$ — траектория быстрой частицы, $\mathbf{v}_q = (d/dt)\mathbf{r}_q$, $\mathbf{j}_{\mathbf{k}\omega}$ — фурье-образ — плотности индуцированного полем частицы тока электронов среды. В интересующей нас рентгеновской области энергий излучаемых квантов

$$I \ll \omega \ll m, \tag{2}$$

где I — средний потенциал ионизации атомов кристалла, m — масса электрона, можно пренебречь как энергией связи электронов в атоме, так и комптоновским изменением ω в процессе рассеяния поля быстрой частицы на атоме. При этом оператор плотности тока электронов среды определяется обычным в теории рассеяния рентгеновских лучей в веществе выражением [6]

$$\hat{\mathbf{j}} = -\frac{e^2}{m} \mathbf{A}(\mathbf{r}, t) \hat{n}, \ \hat{n} = \sum_{\alpha} \sum_{\beta=1}^{Z} \delta(\mathbf{r} - \mathbf{r}_{\alpha} - \mathbf{r}_{\alpha\beta}), \qquad (3)$$

где **A** — вектор потенциал поля, \mathbf{r}_{α} — координаты атомных ядер, $\mathbf{r}_{\alpha\beta}$ — координаты атомных электронов.

Из (1) и (3) получаем уравнение

$$(k^{2} - \omega^{2})\mathbf{E}_{\mathbf{k}\omega} - \mathbf{k}(\mathbf{k}, \mathbf{E}_{\pi\omega}) + \int dk' G(\mathbf{k}' - \mathbf{k}) \mathbf{E}_{\pi'\omega}$$
$$= \frac{i\omega q}{4\pi^{3}} \int dt \mathbf{v}_{q} e^{i\omega t - i\mathbf{k}\mathbf{r}_{q}},$$

$$G(\mathbf{k}'-\mathbf{k}) = \frac{e^2}{2\pi^2 m} \sum_{\alpha} \sum_{\beta=1}^{Z} \delta(\mathbf{r}-\mathbf{r}_{\alpha}-\mathbf{r}_{\alpha\beta}), \qquad (4)$$

описывающее как рассеивающие, так и преломляющие свойства кристалла. Для дальнейшего анализа следует выделить из функции $G(\mathbf{k}' - k)$ когерентную составляющую, описывающую эффект преломления. Усредняя $G(\mathbf{k}' - k)$ по ядерным и электронным координатам, получаем

$$G(\mathbf{k}' - \mathbf{k}) \equiv \langle G(\mathbf{k}' - \mathbf{k}) \rangle + \ddot{G}(\mathbf{k}' - \mathbf{k}),$$
$$\langle G(\mathbf{k}' - \mathbf{k}) \rangle = \omega_0^2 S(\mathbf{k}' - \mathbf{k}), \ \omega_0^2 = \frac{4\pi Z e^2 n_0}{m},$$
(5)

где ω_0 — плазменная частота среды.

Подстановка (5) в (4) приводит к уравнению, отличающемуся от (4) переобозначениями

$$G(\mathbf{k}' - \mathbf{k}) \to \tilde{G}(\mathbf{k}' - \mathbf{k}), \ k^2 - \omega^2 \to k^2 - k_0^2,$$
$$k_0^2 = \omega^2 \left(1 - \frac{\omega_0^2}{\omega^2}\right) = \omega^2 \varepsilon(\omega).$$
(6)

Предполагая рассеяние слабым (кинематическое приближение теории дифракции), решение полученного уравнения определим итерациями

$$\mathbf{E}_{\mathbf{k}\omega} \approx \frac{i\omega q}{4\pi^3} \frac{1}{k^2 - k_0^2} \int dt e^{i\omega t} \left[\left(\mathbf{v}_q - \frac{\mathbf{k}}{k_0^2} \mathbf{k} \mathbf{v}_q \right) e^{-i\mathbf{k}\mathbf{r}_q} - \int \frac{dk'}{k'^2 - k} \tilde{G}(\mathbf{k}' - k) \left(\mathbf{v}_q - \frac{\mathbf{k}'}{k_0^2} \mathbf{k}' \mathbf{v}_q - \frac{\mathbf{k}'}{k_0^2} \right) \right] \times \left(\mathbf{k} \mathbf{v}_q - \frac{\mathbf{k} \mathbf{k}'}{k_0^2} \mathbf{k}' \mathbf{v}_q \right) e^{-i\mathbf{k}'\mathbf{r}_q} \right].$$
(7)

Легко видеть, что первое слагаемое в (7), пропорциональное $e^{-i \mathbf{k} \mathbf{r}_q}$, описывает равновесное электромагнитное поле быстрой частицы, движущейся в среде с диэлектрической проницаемостью $\varepsilon(\omega)$, а второе слагаемое рассеяние этого поля на флуктуациях электронной плотности среды.

Для нахождения спектрально-углового распределения излучения необходимо вычислить интеграл Фурье $\mathbf{E}_{\omega}(\mathbf{r}) = \int d^3 k \mathbf{E}_{\mathbf{k}\omega} e^{i \mathbf{k} \mathbf{r}}$. Интересуясь полем излучения в волновой зоне, интегрирование по d^3k выполним асимптотическими методами

$$\mathbf{E}_{\omega} = \int d^3 k \mathbf{E}_{\mathbf{k}\omega} e^{i\,\mathbf{k}\mathbf{r}} = \mathbf{A}_{\mathbf{n}} \frac{e^{ik_0 r}}{r},$$

$$\begin{split} \mathbf{A}_{\mathbf{n}} &= \frac{i\omega q}{2\pi} \int dt e^{i\omega t} \bigg[(\mathbf{v}_{q} - \mathbf{n}\mathbf{n}\mathbf{v}_{q}) e^{-ik_{0}\mathbf{n}\mathbf{r}_{q}} - \int \frac{d^{3}k}{k^{2} - k_{0}^{2}} \\ &\times \tilde{G}(\mathbf{k} - k_{0}\mathbf{n}) \bigg(\mathbf{v}_{q} - \frac{\mathbf{k}}{k_{0}^{2}}\mathbf{k}\mathbf{v}_{q} - \mathbf{n}\bigg(\mathbf{n}\mathbf{v}_{q} - \frac{\mathbf{n}\mathbf{k}}{k_{0}^{2}}\mathbf{k}\mathbf{v}_{q}\bigg) \bigg) e^{-i\mathbf{k}\mathbf{r}_{q}} \bigg], \end{split}$$

где **n** — единичный вектор в направлении излучения.

Легко видеть, что вклад в выход излучения первого слагаемого в (8) равен нулю для равномерного и прямолинейного движения быстрой частицы. Для учета вклада тормозного излучения выполним в обсуждаемом слагаемом интегрирование по частям и выразим возникающее при этом в формуле ускорение быстрой частицы через потенциал кристалла с помощью уравнения движения. Полагая в получающемся выражении для амплитуды A_n траекторию $\mathbf{r}_q(t)$ прямолинейной (дипольное приближение теории излучения, справедливое, если угол рассеяния частицы в процессе излучения меньше величины γ^{-1} [7]), находим окончательное выражение для амплитуды излучения

$$\begin{aligned} \mathbf{A}_{\mathbf{n}} &= -iq \int d^{3}k \left[\frac{1}{k^{2}} Q(\mathbf{k}) \mathbf{a}_{\mathbf{k}} + \frac{1}{k^{2} 2k_{0} \mathbf{n} \mathbf{k}} \tilde{G}(\mathbf{k}) \mathbf{b}_{\mathbf{k}} \right] \\ &\times \delta[\omega(1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}) - \mathbf{k} \mathbf{v}], \\ Q(\mathbf{k}) &= \frac{eq}{2\pi^{2} m \gamma} \sum_{\alpha} e^{i \, \mathbf{k} \mathbf{r}_{\alpha}} \left(Z - \sum_{\beta=1}^{Z} e^{i \, \mathbf{k} \mathbf{r}_{\alpha\beta}} \right), \\ \mathbf{a}_{\mathbf{k}} &= \frac{\mathbf{k} - \mathbf{v} \cdot \mathbf{k} \mathbf{v}}{1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}} - \frac{\mathbf{n} - \sqrt{\varepsilon} \mathbf{v}}{(1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v})^{2}} (\mathbf{n} \mathbf{k} - \mathbf{n} \mathbf{v} \mathbf{k} \mathbf{v}), \\ \tilde{G}(\mathbf{k}) &= \frac{e^{2}}{2\pi^{2} m} \sum_{\alpha} \sum_{\beta=1}^{Z} e^{i \, \mathbf{k} (\mathbf{r}_{\alpha} + \mathbf{r}_{\alpha\beta})} - \omega_{0}^{2} \delta(\mathbf{k}), \\ \mathbf{b}_{\mathbf{k}} &= \mathbf{v} \frac{\mathbf{k} \mathbf{v}}{1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}} - \mathbf{k} \frac{1}{\varepsilon} - \mathbf{n} \left(\mathbf{n} \mathbf{v} \frac{\mathbf{k} \mathbf{v}}{1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}} - \mathbf{n} \mathbf{k} \frac{1}{\varepsilon} \right). \end{aligned}$$
(9)

Заметим, что при выводе (9) не использовались какиелибо предположения о структуре вещества. Поэтому формула (9) может быть использована для исследования свойств излучения быстрого электрона в среде с произвольной структурой.

Слагаемое в (9), пропорциональное $Q(\mathbf{k})$, соответствует тормозному излучению (ТИ) быстрой частицы на ядрах и электронах атомов среды, а слагаемое, пропорциональное $\tilde{G}(\mathbf{k})$, описывает поляризационное тормозное излучение (ПТИ) частицы на атомных электронах [8]. Прежде чем приступить к анализу спектрально-угловых свойств излучения, отметим, что в нерелятивистском пределе (v « 1) амплитуда (9) правильно описывает известный интерференционный эффект [9] взаимного подавления ПТИ и ТИ на электронах в случае, когда излучающей частицей является нерелятивистский электрон. Действительно, при $v \ll 1$ из (9) следует $\mathbf{a}_{\mathbf{k}} \approx -\mathbf{b}_{\mathbf{k}} \approx \mathbf{k} - \mathbf{n} \cdot \mathbf{n} \mathbf{k} (\varepsilon \approx 1)$ и $k^2 + 2\omega \sqrt{\varepsilon} \mathbf{n} \mathbf{k} \approx k^2$, поэтому при q = -e(e > 0) происходит взаимное сокращение вкладов электронов среды в ТИ и ПТИ. В результате полное излучение сводится только к тормозному излучению нерелятивистского электрона на ядрах [9].

Спектрально-угловое распределение излучения

Следующее из (9) выражение для спектральноуглового распределения числа излучаемых квантов имеет вид

$$\omega \frac{dN}{d\omega dO} = \langle |\mathbf{A}_{\mathbf{n}}|^2 \rangle = \sum_{j=1}^3 \omega \frac{dN^{(j)}}{d\omega dO}, \tag{10}$$

где первое слагаемое соответствует тормозному излучению, второе — ПТИ, а третье слагаемое описывает интерференцию амплитуд ТИ и ПТИ.

Рассмотрим вначале свойства ТИ

$$\omega \frac{dN^1}{d\omega dO} = \omega \frac{dN^{br}}{d\omega dO} = q^2 \int \frac{d^3k}{k^2} \frac{d^3k'}{{k'}^2} \langle Q(\mathbf{k}) Q^*(\mathbf{k}') \rangle$$

× $\mathbf{a_k} \mathbf{a_{k'}} \delta [\omega (1 - \sqrt{\varepsilon} \mathbf{nv}) - \mathbf{kv}] \delta [\omega (1 - \sqrt{\varepsilon} \mathbf{nv}) - \mathbf{k'v}].$ (11)

Здесь скобки $\langle \rangle$ означают усреднение по случайным величинам \mathbf{r}_{α} и $\mathbf{r}_{\alpha\beta}$. В рассматриваемом случае кристаллической среды $\mathbf{r}_{\alpha} = \mathbf{r}_n + \mathbf{r}_{nl} + \mathbf{u}_{nl}$, где \mathbf{r}_n — координата *n*-й элементарной ячейки кристалла, \mathbf{r}_{nl} — равновесное положение *l*-го атома в *n*-й ячейке, \mathbf{u}_{nl} — тепловое смещение атома. Усреднение по тепловым смещениям \mathbf{u}_{nl} приводит к обычному фактору Дебая–Валлера. Усреднение по электронным координатам $\mathbf{r}_{nl\beta}$ будем проводить в рамках статистической модели атома с экспоненциальной экранировкой. Результат усреднения имеет вид

$$\begin{split} \langle Q(\mathbf{k})Q^{*}(\mathbf{k}')\rangle &= \frac{2e^{4}n_{0}}{\pi m^{2}\gamma^{2}} \bigg\{ Z^{2} \frac{k^{4}R^{4}}{(1+k^{2}R^{2})^{2}} \\ \times \left[(2\pi)^{3}n_{0}|S(\mathbf{k})|^{2}e^{-k^{2}u^{2}} \sum_{\mathbf{g}} \delta(\mathbf{k}-\mathbf{g}) + 1 - e^{-k^{2}u^{2}} \right] \\ &+ Z \bigg(1 - \frac{1}{(1+k^{2}R^{2})^{2}} \bigg) \bigg\} \delta(\mathbf{k}-\mathbf{k}') \\ &\equiv \frac{2e^{4}n_{0}}{\pi m^{2}\gamma^{2}} F^{br}(\mathbf{k}) \delta(\mathbf{k}-\mathbf{k}'), \end{split}$$
(12)

где *R* — радиус экранирования в статистической модели атома,

$$S(\mathbf{k}) = \frac{1}{N} \sum_{l=1}^{N} e^{i \, \mathbf{k} \mathbf{r}_{nl}},$$

N — число атомов в элементарной ячейке с объемом Ω , $n_0 = N/\Omega$, u — среднеквадратичная амплитуда тепловых смещений атома, **g** — вектор обратной решетки кристалла.

Слагаемые в (12), содержащие δ -функции $\delta(\mathbf{k} - \mathbf{g})$, соответствуют когерентному тормозному излучению быстрой частицы в кристалле. Следующее слагаемое, пропорциональное множителю $(1 - e^{-k^2u^2})$, отвечает некогерентному тормозному излучению экранированных атомов кристалла. Пропорциональное числу электронов в атоме Z слагаемое в (12) соответствует индивидуальному вкладу в тормозное излучение электронов среды (поправка Ландау-Румера [10]). Подстановка (12) в общую формулу (11) приводит к следующему выражению для спектрально-углового распределения интенсивности ТИ:

$$\omega \frac{dN^{br}}{dt d\omega dO} = \frac{e^6 n_0}{\pi^2 m^2 \gamma^2 (1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v})^2}$$
$$\times \int \frac{d^3 k}{k^4} \left(\mathbf{k} - \mathbf{v} \cdot \mathbf{k} \mathbf{v} - \frac{\mathbf{n} - \sqrt{\varepsilon} \mathbf{v}}{1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}} (\mathbf{n} \mathbf{k} - \mathbf{n} \mathbf{v} \mathbf{k} \mathbf{v}) \right)^2$$
$$\times F^{br}(\mathbf{k}) \delta \left[\omega (1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}) - \mathbf{k} \mathbf{v} \right]. \tag{13}$$

В результате аналогичных вычислений получается следующая формула для распределения интенсивности ПТИ:

$$\begin{split} \omega \frac{dN^{(2)}}{dt d\omega dO} &= \omega \frac{dN^{pb}}{dt d\omega dO} = \frac{e^6 n_0}{\pi^2 m^2} \int \frac{d^3 k'}{(k^2 + 2\omega \sqrt{\varepsilon} \mathbf{n} \mathbf{k})^2} \\ &\times \left(\mathbf{v}\omega - \mathbf{k} \frac{1}{\varepsilon} - \mathbf{n} \left(\mathbf{n} \mathbf{v}\omega - \mathbf{n} \mathbf{k} \frac{1}{\varepsilon} \right) \right)^2 \\ &\times F^{pb}(\mathbf{k}) \delta \left(\omega (1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}) - \mathbf{k} \mathbf{v} \right), \\ F^{pb}(\mathbf{k}) &= Z^2 \frac{1}{(1 + k^2 R^2)^2} \left[(2\pi)^3 n_0 |S(\mathbf{k})|^2 e^{-k^2 u^2} \\ &\times \sum_{\mathbf{g}} \delta(\mathbf{k} - \mathbf{g}) + 1 - e^{-k^2 u^2} \right] + Z \left(1 - \frac{1}{(1 + k^2 R^2)^2} \right). \end{split}$$

$$(14)$$

Интерференционное слагаемое в (10) оказывается пропорциональным знаку заряда быстрой частицы

$$\begin{split} &\omega \frac{dN^{(3)}}{dt d\omega dO} \equiv \omega \frac{dN^{\text{int}}}{dt d\omega dO} = \text{sign}(q) \frac{2e^6 n_0}{\pi^2 m^2 \gamma (1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v})} \\ &\times \int \frac{d^3 k}{k^2 (k^2 + 2\omega \sqrt{\varepsilon} \mathbf{n} \mathbf{k})} \left(\mathbf{v} \omega - \mathbf{k} \frac{1}{\varepsilon} - \mathbf{n} \left(\mathbf{n} \mathbf{v} \omega - \mathbf{n} \mathbf{k} \frac{1}{\varepsilon} \right) \right) \\ &\times \left(\mathbf{k} - \mathbf{v} \mathbf{k} \mathbf{v} - \frac{\mathbf{n} - \sqrt{\varepsilon} \mathbf{v}}{1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}} (\mathbf{n} \mathbf{k} - \mathbf{n} \mathbf{v} \mathbf{k} \mathbf{v}) \right) F^{\text{int}}(\mathbf{k}) \\ &\times \delta \left(\omega (1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}) - \mathbf{k} \mathbf{v} \right), \\ F^{\text{int}}(\mathbf{k}) = Z^2 \frac{k^2 R^2}{(1 + k^2 R^2)^2} \left[(2\pi)^3 n_0 |S(\mathbf{k})|^2 e^{-k^2 u^2} \\ &\times \sum_{\mathbf{g}} \delta(\mathbf{k} - \mathbf{g}) + 1 - e^{-k^2 u^2} \right] - Z \left(1 - \frac{1}{(1 + k^2 R^2)^2} \right). \end{split}$$

$$\tag{15}$$

Приступая к анализу полученных выражений, отметим некоторые общие свойства рассматриваемого излучения. Прежде всего заметим [11], что когерентная по всему кристаллу составляющая ПТИ в формуле (14) адекватна хорошо известному параметрическому рентгеновскому излучению (ПРИ) [1–3], рассматриваемому обычно в рамках макроскопического подхода [12–14]. Сравнение некогерентных по кристаллу, но когерентных по атомным электронам составляющих ТИ и ПТИ показывает

Журнал технической физики, 2001, том 71, вып. 8

резкое отличие влияния тепловых колебаний атомов кристалла на указанные механизмы излучения. Из выражения для $F^{br}(\mathbf{k})$ следует, что основной вклад в ТИ вносят большие значения переданных импульсов $k > R^{-1}$, т. е. малые прицельные параметры столкновения быстрой частицы с атомом $b < R^{-1}$ (вклад столкновений с $b \gg R^{-1}$ подавлен вследствие экранирования ядра атомными электронами). С другой стороны, выражение для $F^{br}(\mathbf{k})$ показывает, что выход ПТИ определяется в основном столкновениями с прицельными параметрами $b > R^{-1}$ (вклад столкновений с $b < R^{-1}$ в когерентную по атомным электронам составляющую ПТИ подавлен, поскольку при этом части электронной "шубы" атома, расположенные по разные стороны от траектории быстрой частицы, смещаются в противоположных направлениях, что приводит к уменьшению когерентного индуцированного тока атомных электронов, ответственных за возникновению ПТИ). Благодаря указанным различиям входящий в сечения некогерентных ТИ и ПТИ множитель $(1 - e^{-k^2 u^2})$ близок к единице в случае ТИ и весьма мал в случае ПТИ. Таким образом, некогерентная составляющая ПТИ в кристалле резко подавляется [15] в отличие от аналогичной составляющей ТИ.

Обратим также внимание, что индивидуальный вклад электронов среды в сечения ТИ, ПТИ и в интерференционное слагаемое имеют различный знак. Для объяснения заметим, что обсуждаемый член в интерференционном слагаемом (15) пропорционален среднему от произведения переменного тока быстрой частицы, возникающего вследствие рассеяния частицы на электронах среды, и индуцированного частицей тока электронов среды. Эти токи направлены, очевидно, в противоположные стороны, что и приводит к знаку "–" в формуле для $F^{\text{int}}(\mathbf{k})$. С другой стороны, в корреляторах $\langle Q(\mathbf{k})Q^*(\mathbf{k}')\rangle$ и $\langle G(\mathbf{k})G^*(\mathbf{k}')\rangle$ усредняются произведения величин одной физической природы, что и определяет знак "+" в соответствующих членах формул (12) и (14).

В настоящей работе мы ограничимся анализом только когерентной по всему кристаллу составляющей излучения, обусловленной рассеянием как быстрой частицы, так и ее поля системой параллельных атомных плоскостей кристалла, задаваемых вектором обратной решетки **g**. Общее выражение для полного когерентного излучения следует из выражения (12)–(15) и имеет вид

$$\begin{split} \omega \frac{dN_{\mathbf{g}}}{dt d\omega dO} &= \frac{8\pi Z^2 e^6 n_0^2 |S(\mathbf{g})|^2 e^{-g^2 u^2}}{m^2 (1+g^2 R^2)^2} \bigg[\operatorname{sign}(q) \frac{R^2}{\gamma (1-\sqrt{\varepsilon} \mathbf{n} \mathbf{v})} \\ &\times \left(\mathbf{g} - \mathbf{v} \cdot \mathbf{g} \mathbf{v} - \frac{\mathbf{n} - \sqrt{\varepsilon} \mathbf{v}}{1-\sqrt{\varepsilon} \mathbf{n} \mathbf{v}} (\mathbf{n} \mathbf{g} - \mathbf{n} \mathbf{v} \mathbf{g} \mathbf{v}) \right) + \frac{1}{g^2 + 2\omega \sqrt{\varepsilon} \mathbf{n} \mathbf{g}} \\ &\times \left(\mathbf{v} \omega - \mathbf{g} \frac{1}{\varepsilon} - \mathbf{n} \left(\mathbf{n} v \omega - \mathbf{n} \mathbf{g} \frac{1}{\varepsilon} \right) \right) \bigg]^2 \delta \big(\omega (1 - \sqrt{\varepsilon} \mathbf{n} \mathbf{v}) - \mathbf{g} \mathbf{v} \big), \end{split}$$
(16)

явно указывающий на интерференцию когерентных составляющих ТИ и ПТИ.

Для дальнейшего анализа удобно ввести в рассмотрение двумерные переменные Ψ и Θ , характеризующие

Рис. 1. Угловые переменные задачи.

угловой разброс пучка быстрых частиц и угловое распределение излучаемых фотонов соответственно. Полагаем

$$\mathbf{v} = \mathbf{e}_1 \left(1 - \frac{1}{2} \gamma^2 - \frac{1}{4} \Psi^2 \right) + \mathbf{\Psi}, \ \mathbf{e}_1 \mathbf{\Psi} = \mathbf{0},$$
$$\mathbf{n} = \mathbf{e}_2 \left(1 - \frac{1}{2} \Theta^2 \right) + \mathbf{\Theta}, \ \mathbf{e}_2 \mathbf{\Theta} = \mathbf{0},$$
(17)

где единичный вектор е1 направлен вдоль оси пучка излучающих частиц, а вектор \mathbf{e}_2 — вдоль оси детектора излучения. В эксперименте положения векторов e1 и e2 фиксированы: как парвило, $\mathbf{e}_1 \mathbf{e}_2 = \cos \varphi$, $\varphi = \text{const}$, однако кристаллическая мишень поворачивается относительно пучка частиц с помощью гониометра (при этом изменяется направление вектора обратной решетки **g**). В эксперименте обычно векторы \mathbf{g}, \mathbf{e}_1 и \mathbf{e}_2 лежат в одной плоскости. При этом наибольший интерес представляет зависимость распределения излученной энергии (или числа квантов) от угла ориентации скорости быстрой частицы относительно отражающей кристаллографической плоскости. В рассматриваемой задаче ориентационная зависимость описывается углом Θ' , отсчитываемым от положения отражающей плоскости, соответствующего точному условию брэгговского резонанса (на рис. 1 показаны также направления изменения составляющих Ψ_{\parallel} и Θ_{\parallel} ; составляющие Ψ_{\perp} и Θ_{\perp} изменяются в плоскости, перпендикулярной плоскости рисунка).

При подставновке выражений (17) в общую формулу (16) будем полагать величину φ^2 малой по сравнению с единицей, однако достаточно большой по сравнению с параметром γ^{-2} (область углов $\varphi \approx \gamma^{-1}$ требует особого рассмотрения, что выходит за рамки настоящей работы). В новых обозначениях спектрально-угловое распределение полного излучения принимает вид

$$\omega \frac{dN_{\mathbf{g}}}{dt d\omega d^{2} \Theta} = W_{\mathbf{g}} P(\Theta', \mathbf{\Omega}) \delta \left(\omega - \frac{g}{\varphi} \left(1 + \frac{2\Theta'}{\varphi} \right) \right),$$
$$W_{\mathbf{g}} = \frac{e^{2} \omega_{0}^{4}}{\pi g^{2}} \frac{|S(\mathbf{g})|^{2} e^{-g^{2} u^{2}}}{(1 + g^{2} R^{2})^{2}},$$
$$P = \frac{4g^{4} R^{4}}{\gamma^{2} \varphi^{6}} + \frac{\Omega^{2}}{(\gamma^{-2} + \chi + \Omega^{2})^{2}}$$
$$- \operatorname{sign}\left(q\right) \frac{4g^{2} R^{2}}{\gamma \varphi^{3}} \frac{\Omega_{\parallel}}{\gamma^{-2} + \chi + \Omega^{2}}.$$
(18)

Журнал технической физики, 2001, том 71, вып. 8

В полученном выражении

$$\chi = \frac{\omega_0^2}{\omega^2}, \ \Omega^2 = \Omega_{\parallel}^2 + \Omega_{\perp}^2, \ \Omega_{\parallel} = 2\Theta' + \Theta_{\parallel} + \Psi_{\parallel}$$
$$\Omega_{\perp} = \Theta_{\perp} - \Psi_{\perp}.$$

Влияние интерференции на ориентационную зависимость выхода излучения

Воспользуемся результатом (18) для анализа зависимости выхода излучения от ориентационного угла Θ' . Рассмотрим прежде всего выход коллимированного излучения ($\Theta^2 \ll \gamma^{-2}$; в реальных условиях угловой размер детекоров рентгеновского излучения Θ_d обычно мал по сравнению с величиной γ^{-1}), генерируемого пучком частиц с малой начальной расходимостью $\Psi_0 \ll \gamma^{-1}$ в тонком кристалле (угол многократного рассеяния излучающих частиц на толщине кристалла L должен быть меньше величины γ^{-1}). Зависимость числа излучаемых квантов от Θ' описывается в рассматриваемых условиях простой функцией

$$N_{\mathbf{g}} = \pi \gamma^2 \Theta_d^2 W_{\mathbf{g}} \frac{L\varphi}{g} T(\alpha, \zeta, x),$$
$$T = \frac{1}{1 + \frac{x}{\zeta}} \left(-\operatorname{sign}(q)\alpha + \frac{x}{1 + x^2} \right)^2, \qquad (19)$$

где $\alpha = (2g^2R^2)/(\gamma^2\varphi^3), \zeta = \gamma\varphi, x = 2\gamma\Theta'.$

В полученной формуле учтено, что в рамках кинематического приближения, использованного при выводе основного результата (16), величина

$$\gamma^2 \chi = \frac{\gamma^2 \varphi^2 \omega_0^2}{g^2}$$

должна быть малой [15].

Кривые ориентационной зависимости T(x), построенные при различных значениях параметров α и ζ для позитронов и электронов, показаны на рис. 2 и 3. Здесь же приведены кривые ориентационной зависимости выхода ПРИ без учета вклада ТИ (кривые $T(0, \zeta, x)$).

Приведенные результаты свидетельствуют о весьма существенном влиянии эффекта интерференции на свойства ПРИ. Наиболее важным с точки зрения эффективности рентгеновского источника является следующая из (19) возможность увеличения спектрально-угловой плотности излучения, причем в области более жестких квантов (для излучающих электронов, как следует из приведенных рисунков).

Простая функция $T(\alpha, \zeta, x)$ позволяет легко установить оптимальные значения параметров рентгеновского источника на уровне оценок. Для точного расчета характеристик источника необходимо принять во внимание влияние начальной расходимости многократного

Рис. 2. Ориентационная зависимость выхода излучения электронов. $\xi = 20$; α : I = 0, 2 = 0.1, 3 = 0.5.

Рис. 3. Ориентационная зависимость выхода излучения позитронов. ξ ; 1-3 — то же, что и на рис. 2.

рассеяния пучка излучающих частиц, а также фотопоглощение излучаемых квантов. Интересуясь излучением жестких квантов (характерная энергия излучаемых фотонов $\omega_{\text{eff}} = \omega_b = g/\varphi$ растет с уменьшением угла излучения φ в соответствии с формулой (18)), будем предполагать длину фотопоглощения большой по сравнению с толщиной кристалла *L*. Используя функцию распределения частиц пучка

$$f(t, \Psi) = \frac{1}{\pi(\Psi_0^2 + \Psi_S^2 t)} \exp\left(-\frac{\Psi^2}{\Psi_0^2 + \Psi_S^2 t}\right)$$

где Ψ_0 — начальная расходимость пучка, Ψ_S — среднеквадратичный угол многократного рассеяния на единице длины, и предполагая выполненным условие жесткой коллимации излучения $\gamma^2 \Theta_d^2 \ll 1$, получим из (18) более общий результат

$$N_{\mathbf{g}} = \frac{\pi \Theta_{d}^{2}}{\Psi_{S}} W_{\mathbf{g}} \frac{\varphi}{g} \frac{1}{1 + \frac{x}{\zeta}} \int_{0}^{\infty} dt \left[E_{1} \left(\frac{t}{\gamma^{2} \Psi_{0}^{2} + \gamma^{2} \Psi_{S}^{2} L} \right) - E_{1} \left(\frac{t}{\gamma^{2} \Psi_{0}^{2}} \right) \right] \left[\alpha^{2} + \frac{1}{\beta^{\frac{1}{2}}} - \frac{1 + x^{2} + t}{\beta^{\frac{3}{2}}} - \operatorname{sign}\left(q\right) \frac{\alpha}{x} \left(1 - \frac{1 - x^{2} + t}{\beta^{\frac{1}{2}}} \right) \right],$$
(20)

где $\beta = (1 + x^2 + t)^2 - 4x^2t.$

Нетрудно убедиться, что в случае малой начальной расходимости пучка ($\gamma^2 \Psi_0^2 \ll 1$) и малой толщины кристалла ($\gamma^2 \Psi_3^2 L \ll 1$) формула (20) переходит в более простую формулу (19).

О влиянии интерференции на поляризацию излучения

Для описания поляризационных свойств излучения необходимо вернуться к общей формуле (16) и разложить вектор в квадратных скобках этой формулы по единичным векторам поляризации $\mathbf{e}_{\perp} = [\mathbf{n}, \mathbf{g}] / \sqrt{g^2 - (\mathbf{ng})^2}$ и $\mathbf{e}_{\parallel} = [\mathbf{n}, \mathbf{e}_{\perp}]$. Ограничимся анализом поляризации коллимированного излучения без учета начальной расходимости и многократного рассеяния (условия применимости формулы (19)). При этом ориентационная зависимость числа излученных квантов по-прежнему определяется формулой (19), в которой функция *T* имеет вид

$$T = \frac{1}{1 + \frac{x_{\parallel}}{\xi}} \left[\frac{x_{\perp}}{1 + x^2} \mathbf{e}_{\perp} - \left(-\operatorname{sign}\left(q\right)\alpha + \frac{x_{\parallel}}{1 + x^2} \right) \mathbf{e}_{\parallel} \right]^2,$$
⁽²¹⁾

где $x^2 = x_{\perp}^2 + x_{\parallel}^2, x_{\perp} = \gamma \Theta_{\perp}, x_{\parallel} = \gamma (\Theta' + \Theta_{\parallel}).$

Выражение (21) показывает, что рассматриваемое излучение является полностью линейно поляризованным. Измеряемый обычно в эксперименте третий коэффициент Стокса ξ_3 определяется следующим из (21) выражением

$$\xi_3(x,\eta,\alpha) = \frac{\sin^2 \eta - \left(\cos \eta - \operatorname{sign}(q)\alpha \frac{1+x^2}{x}\right)^2}{\sin^2 \eta + \left(\cos \eta - \operatorname{sign}(q)\alpha \frac{1+x^2}{x}\right)}, \quad (22)$$

где $x_{\perp} = x \sin \eta$, $x_{\parallel} = x \cos \eta$.

Согласно (22), влияние эффекта интерференции на поляризацию излучения характеризуется только одним параметром

$$\lambda = \alpha \frac{1 + x^2}{r}$$

Зависимость $\xi_3(\eta)$ при различных значениях параметра λ приведена на рис. 4 для случая излучающих электронов. Из рисунка следует, что влияние интерференции на состояние поляризации излучения может быть весьма значительным.

Рис. 4. Асимметрия поляризации излучения электронов. λ : I = 0, 2 = 0.5, 3 = 1.

Рис. 5. Векторное поле поляризации излучения электронов: $\alpha = 0$ (*a*), 0.5 (*b*).

Заметим, что вектор в квадратных скобках формулы (21) непосредственно указывает направление электрического поля излучаемого фотона, т.е. направление

поляризации. На рис. 5 показано распределение векторного поля

$$\mathbf{e}(\mathbf{x},\alpha) = \frac{\mathbf{e}_{\perp}x_{\perp} - \mathbf{e}_{\parallel}\left(x_{\parallel} - \operatorname{sign}\left(q\right)\alpha(1+x^{2})\right)}{\sqrt{x_{\perp}^{2} + \left(x_{\parallel} - \operatorname{sign}\left(q\right)\alpha(1+x^{2})\right)^{2}}}$$
(23)

на плоскости угловых переменных x_{\parallel} и x_{\perp} . Видим, что эффект интерференции существенно перестраивает структуру поля направлений поляризации $\mathbf{e}(\mathbf{x}, \alpha)$ как в области больших значений x, где доминирует вклад когерентного ТИ, так и в области $x \le 1$, в которой амплитуды ПРИ и когерентного ТИ могут иметь одинаковый порядок величины.

Заключение

Проведенный анализ процесса рентгеновского излучения релятивистских электронов (позитронов), движущихся в кристалле мод малым углом к системе атомных плоскостей кристалла, позволяет сделать следующие выводы.

В рассматриваемых условиях проявляется эффективная интерференция как когерентных, так и некогерентных составляющих тормозного и поляризационного тормозного излучения быстрой частицы.

В условиях интерференции происходит весьма существенная перестройка спектрально-углового распределения излучения, зависящая от знака заряда излучающей частицы. При этом возможно значительное увеличение яркости излучения.

Интерференция резко изменяет угловую зависимость поляризации результирующего излучения.

Работа частично поддержана фондом STSU (грант № 285) и фондом РФФИ (грант № 98-02-17238).

Список литературы

- [1] *Ter-Mikaelian M.L.* High Energy Electromagnetic Processes in Condensed Media. New York: Wiley, 1972. 618 p.
- [2] Барышевский В.Г., Феранчук И.Д. // ЖЭТФ. 1972. Т. 34. Вып. 3. С. 502–513.
- [3] Гарибян Г.М., Ян Ши // ЖЭТФ. 1972. Т. 34. Вып. 3. С. 495– 501.
- Kleiner V.L., Nasonov N.N., Safronov A.G. // Phys. St. Sol. B. 1993. Vol. 181. N 5. P. 223–234.
- [5] Blazhevich S.V., Bochek G.I., Kulibaba V.I. et al. // Phys. Lett. A. 1994. Vol. 195. P. 210–214.
- [6] Пинскер З.Г. Динамическое рассеяние рентгеновских лучей в идеальных кристаллах. М.: Наука, 1974. 354 с.
- [7] *Ландау Л.Д., Лившиц Е.М.* Теория поля. М.: Наука, 1973. 514 с.
- [8] Амусья М.Я., Буймистров И.М., Зон Б.А. и др. Поляризационное тормозное излучение частиц и атомов. М.: Наука, 1978. 372 с.
- [9] Буймистров В.М., Трахтенберг Л.И. // ЖЭТФ. 1975.
 Т. 69. Вып. 1. С. 108–117.
- [10] Landau L., Rumer G. // Proc. Roy. Soc. 1938. Vol. 166. P. 213–223.
- 5 Журнал технической физики, 2001, том 71, вып. 8

- [11] Лапко В.Л., Насонов Н.Н. // ЖТФ. 1990. Т. 55. Вып. 1. С. 160–165.
- [12] Baryshevsky V.G., Feranchuk I.D. // J. Phys. (Paris). 1983. Vol. 44. P. 913–928.
- [13] Garibian G.M., Yang C. // Nucl. Instr. Meth. A. 1986. Vol. 248.
 P. 29–37.
- [14] Caticha A. // Phys. Rev. B. 1992. Vol. 45. P. 9541–9555.
- [15] Nasonov N.N., Safronov A.G. // Proc. Intern. Symposium RREPS-93. Tomsk, 1993. P. 113.