Электронные свойства полуизолирующего GaAs(Cr), облученного протонами

© В.Н. Брудный[¶], А.И. Потапов

Сибирский физико-технический институт им. В.Д. Кузнецова, 634050 Томск, Россия

(Получена 13 декабря 2000 г. Принята к печати 26 апреля 2001 г.)

При протонном облучении (5 МэВ, 300 К, $D \approx 2 \cdot 10^{17} \text{ см}^{-2}$) полуизолирующего GaAs(Cr) ($\rho \approx (3-4)10^8 \text{ Ом} \cdot \text{ см}$) выявлены n-p-конверсия типа проводимости и уменьшение удельного электросопротивления до $10^2 \text{ OM} \cdot \text{ см}$ (300 K). Температурные зависимости ρ в сильно облученных образцах указывают на прыжковую проводимость в интервале температур (400–120) К с переходом к проводимости с переменной длиной прыжка при $T \leq 120 \text{ K}$. В низкоомных слоях облученного протонами GaAs(Cr) обнаружены эффекты электронного переключения вблизи 20 К. Исследован изохронный отжиг радиационных дефектов в интервале температур (20–750)°С.

Введение

Начиная с первой работы, в которой было показано, что бомбардировка ионами Н+(3 МэВ) приводит к увеличению электросопротивления GaAs [1], протонное облучение получило широкое применение для создания высокоомных областей — для межэлементной изоляции в электронных схемах на основе данного материала, для изготовления элементов интегральной оптики и т.п. Позднее было показано, что изменения электрофизических, рекомбинационных и оптических свойств GaAs при высокоэнергетическом облучении обусловлены захватом свободных носителей на глубокие уровни радиационных дефектов (РД), так называемые электронные (Е) и дырочные (H) ловушки — основные по концентрации РД в GaAs, облученном вблизи комнатных температур [2]. Было показано, что в зависимости от исходного уровня легирования материала протонная бомбардировка приводит к увеличению удельного сопротивления GaAs до максимальных значений $\rho_{\rm max}(D) \approx (10^5 - 10^9) \, {\rm Om} \cdot {\rm cm}$ (при 300 К) [3,4]. При этом при всех видах высокоэнергетического облучения уровень Ферми в GaAs стабилизируется в предельном (стационарном) положении вблизи $F_{\text{lim}} \approx E_V + 0.6$ эВ, которое тождественно положению уровня локальной электронейтральности данного материала [5]. Последующее облучение ("переоблучение") такого материала протонами приводит к снижению удельного сопротивления облученных образцов по сравнению с его максимальными значениями $\rho_{\max}(D)$, достигаемыми при облучении, и в конечном счете к формированию низкоомных слоев GaAs [4,6]. Именно исследованию свойств такого "переоблученного" GaAs и посвящена главным образом настоящая работа.

Методика эксперимента

Особенность данной работы состоит в том, что исследование воздействия протонных пучков на электрофизические свойства арсенида галлия проводилось на полуизолирующем материале, в качестве которого выбран выращенный методом Чохральского *n*-GaAs(Cr) ($\rho \approx (3-4) \cdot 10^8 \text{ Om} \cdot \text{см}$ и $\mu_{\text{H}} \approx 1500 \text{ см}^2/(\text{B} \cdot \text{c})$ при 300 K). Выбор GaAs(Cr) обусловлен несколькими причинами:

1) такой материал используется в качестве подложек в интегральных схемах,

 он находит применение в физике высоких энергий при производстве детекторов ядерного излучения, в том числе для регистрации высокоинтенсивных протонных пучков,

3) исходный уровень Ферми в GaAs $\langle Cr \rangle$ расположен глубоко в запрещенной зоне и близок к F_{lim} в облученном материале, что позволяет минимизировать влияние захвата свободных носителей на уровни РД на электрические свойства облученных образцов. Это открывает возможности исследования электронных свойств практически собственного материала с высокой плотностью глубоких локальных состояний РД в запрещенной зоне кристалла, в котором положение уровня Ферми в результате облучения изменяется незначительно. Можно отметить, что впервые низкоомные слои в полуизолирующем GaAs были получены с помощью бомбардировки ионами инертных газов [7].

Бомбардировка ионами водорода (Е = 5 МэВ) проводилась на циклотроне при $T \approx 320 \,\mathrm{K}$ и плотности тока $i \approx (1-5) \cdot 10^{-8} \,\mathrm{A/cm^2}$. С учетом среднего проецированного пробега ионов H⁺ (5 M₃B) в GaAs, составляющего около 125-130 мкм, образцы для исследований выбирались толщиной $d \approx 90$ мкм. Величина пробега ионов определялась из измерений распределения интенсивности краевой катодолюминесценции по сколу облученного слоя с использованием электронного микрозонда диаметром менее 5 мкм. Для получения более однородного распределения РД по глубине нарушенного слоя облучение проводилось с двух сторон, при этом интегральные потоки частиц суммировались. Это позволило работать с объемными образцами и тем самым исключить использование подложек и уменьшить влияние поверхности на измеряемые характеристики, что существенно при исследовании материала с высоким

[¶] E-mail: brudnyi@ic.tsu.ru

Fax: (3822)233034

удельным электросопротивлением. При этом высокая эффективность дефектообразования при протонном облучении позволяет получить материал с высокой плотностью РД.

Эксперимент и его обсуждение

Зависимости от дозы облучения D удельного электросопротивления $\rho(D)$, постоянной Холла $(R_{\rm H})$ и энергии активации (E_{ρ}) в выражении $\rho(T) \propto \exp[E_{\rho}(D)/kT]$ для температур вблизи 300 К в исследованном материале представлены на рис. 1. На кривых $\rho(D)$ и $E_{\rho}(D)$ видны 2 области изменений электросопротивления и энергии активации:

1) первоначальное возрастание ρ от $(3{-}4){\,\cdot\,}10^8\,{\rm Om\,\cdot\,cm}$ в исходном материале до

$$ho(D)_{
m max} pprox 1/2 en_i (\mu_n \mu_p)^{1/2} pprox (10^9 - 2 \cdot 10^9)$$
 Ом \cdot см

и соответствующее этому увеличению $E_{\rho}(D)$ от ≈ 0.67 эВ до $E_{\rho}(D) \approx E_g/2$ при малых потоках ионов $\mathrm{H^+}~(D \lesssim 2 \cdot 10^{14} \,\mathrm{cm^{-2}});$

2) уменьшение ρ до значений 10^2 Ом · см и соответственно E_{ρ} до 0.1 эВ при последующем облучении материала интегральными потоками протонов до величины $D = 2 \cdot 10^{17}$ см⁻².

Измерения эффекта Холла и термоэдс вблизи 300 К указывают на n-p-конверсию типа проводимости GaAs $\langle Cr \rangle$ при $D \approx 8 \cdot 10^{14} \text{ см}^{-2}$ за счет смещения уровня Ферми в предельное (стационарное) положение (для GaAs — вблизи E_V + 0.6 эВ [5]). При этом *p*-тип проводимости облученного материала сохраняется

Рис. 1. Изменение удельного электросопротивления ρ (1), постоянной Холла $R_{\rm H}$ (2) и энергии электросопротивления E_{ρ} (3) в выражении $\rho(T) \propto \exp[E_{\rho}(D)/kT]$ для полуизолирующего GaAs(Cr) при протонном (5 МэВ) облучении; температура измерения $T \approx 300$ К.

Рис. 2. Спектры оптического поглощения GaAs(Cr), облученного протонами; температура измерений $T \approx 80$ К. Интегральные потоки $D, 10^{17}$ см⁻²: $I = 0, 2 = 10^{-3}, 3 = 0.01, 4 = 0.03, 5 = 0.3, 6 = 1, 7 = 2.$

при дальнейшей протонной бомбардировке (согласно измерениям термоэдс вблизи 300 K).

Очевидно, что изменения характера кривых $\rho(D)$ при $D \gtrsim 10^{15} \,\mathrm{cm}^{-2}$ (вблизи 300 К) соответствуют смене механизма электронного транспорта от переноса заряда свободными носителями к прыжковому механизму переноса заряда по глубоким состояниям РД вследствие их высокой плотности в "переоблученных" образцах. Эксперименты показывают, что суммарная скорость введения Е- и Н-ловушек в GaAs для протонов с энергией $E = 5 \,\mathrm{M}$ эВ составляет около $10^3 \,\mathrm{cm}^{-1}$ согласно измерениям по методу НЕСГУ (нестационарной емкостной спектроскопии глубоких уровней) на образцах *n*-GaAs [8]. Для $D \approx 10^{15}$ см⁻² это позволяет оценить общую концентрацию РД на уровне 10¹⁸ см⁻³ и соответственно для $D \approx 2 \cdot 10^{17} \,\mathrm{cm}^{-2}$ — порядка $10^{20} \,\mathrm{cm}^{-3}$ (в предположении сохранения скорости введения РД при больших потоках ионов H⁺). При этом скорость введения глубоких ловушек *E5* (*E*_C - 0.90 эВ), вблизи уровня которых стабилизируется уровень Ферми в облученном GaAs, составляет около $50 \,\mathrm{cm}^{-1}$, что соответствует концентрации этих ловушек на уровне $10^{19} \, {\rm cm}^{-3}$ (при $D = 2 \cdot 10^{17} \,\mathrm{cm}^{-2}$).

Эти оценочные значения в целом подтверждаются данными оптических исследований, которые показывают высокую плотность щелевых состояний в облученных протонами образцах (рис. 2). Кривые оптического поглощения $\alpha(h\nu)$ имеют вид, близкий к экспоненциальному, за исключением особенностей вблизи 0.5 и 0.1 эВ. При этом вклад изгиба зон в величину $\alpha(h\nu)$ в исследуемом материале должен быть существенным только в области краевого поглощения, поскольку смещение уровня Ферми в облученных областях по отношению к его положе-

Рис. 3. Температурные зависимости сопротивления ρ в GaAs(Cr), облученном протонами. Интегральные потоки $D, 10^{17}$ см⁻²: $I = 0, 2 = 5 \cdot 10^{-5}, 3 = 0.04, 4 = 0.1, 5 = 0.17, 6 = 1.5.$

нию в исходном GaAs $\langle Cr \rangle$ составляет менее 0.2 эВ. Следует ожидать, что зависимость $\alpha(h\nu)$ в целом повторяет распределение плотности состояний в запрещенной зоне облученного протонами GaAs $\langle Cr \rangle$. Принимая сечение поглощения на глубоких уровнях порядка 5·10⁻¹⁷ см² [9], по величине $\alpha(h\nu)$ вблизи 0.6 эВ можно оценить плотность щелевых состояний на уровне 1.6 · 10¹⁹ см⁻³ (для $D \approx 2 \cdot 10^{17}$ см⁻²), что по порядку величины близко к экстраполированным значениям плотности ловушек *E*5 ($E_C - 0.90$ эВ) из измерений по методу НЕСГУ.

Высокая плотность глубоких локальных центров вблизи энергии, соответствующей Flim в облученном протонами GaAs(Cr), приводит к появлению прыжковой проводимости (рис. 3). Так, на исходных кристаллах температурные зависимости ρ выявляют активационный участок типа $\rho(T) \approx \rho_1 \exp(E_1/kT)$ при T > 200 K, где величина $E_1 \approx 0.67$ эВ. При малых потоках облучения значение Е1 растет до величины, близкой $E_g/2$ (рис. 3, кривая 2), что соответствует некоторому заглублению уровня Ферми при введении РД. При этом величина $1/\rho_1 \approx 10^3 \, \mathrm{Om}^1 \cdot \mathrm{cm}^{-1}$ близка к значению так называемой минимальной металлической проводимости GaAs $\sigma_{\rm m} \approx 550 \, {\rm Om}^{-1} \cdot {\rm cm}^{-1}$ [9,10]. Эта область $\rho(T)$ обусловлена термическим возбуждением носителей заряда с глубоких уровней (Сr, РД), расположенных вблизи уровня Ферми, в зону проводимости кристалла. В области более низких температур отмечен второй активационный участок $\rho(T)$, характерный для прыжковой проводимости по центрам с глубокими уровнями. Вклад прыжковой проводимости в общий перенос заряда увеличивается с ростом интегрального потока протонов, при этом имеет место практически параллельный сдвиг низкотемпературных кривых $\rho(T)$ в область меньших значений ρ (рис. 3, кривые 3–6). В таких образцах уровень Ферми уже закреплен вблизи своего предельного положения $F_{\text{lim}} \approx E_V + 0.6$ эВ, а сам материал является почти полностью компенсированным.

При $D \approx 2 \cdot 10^{17}$ см⁻² прыжковая проводимость доминирует в области температур от ≈ 400 до 20 К (рис. 4). На кривых $\rho(T)$ таких образцов для T < 400 К можно выделить по крайней мере две области изменения $\rho(T)$. При температурах вблизи 400–150 К имеет место зависимость вида $\rho(T) \approx \rho_3 \exp(E_3/kT)$, где $\rho_3 \approx (1-2)$ Ом · см и соответствующее значение E_3 составляет около 0.1 эВ. Эта область соответствует прыжковой проводимости носителей по зоне дефектов шириной порядка E_3 . При понижении температуры (ниже 120 К) величина локальной энергии активации электросопротивления, $E_l = \partial \ln \rho / \partial (kT)^{-1}$, уменьшается, что указывает на переход к проводимости с переменной длиной прыжка.

Для исследования механизма прыжковой проводимости в области переменной энергии активации E_l были построены зависимости $\rho(T) \propto \exp[(T_0/T)^p]$. Как отмечалось уже в ранних исследованиях [11], выбор показателя *p* представляет непростую задачу, поэтому на

Рис. 4. Температурные зависимости ρ ($\rho(T) \propto T^1$ (1), $\rho(T) \propto T^{1/2}$ (2), $\rho(T) \propto T^{1/4}$ (3)) в облученном протонами $D \approx 2 \cdot 10^{17}$ см⁻² GaAs (Cr). Сплошными линиями показаны участки, соответствующие $\rho(T) \propto \exp(0.1/kT)$ для кривой 1 и $\rho(T) \propto \exp[(7 \cdot 10^7/T)^{1/4}]$ для кривой 3. На вставке — вольтамперная характеристика облученного образца ($T \approx 20$) К при сопротивлении нагрузки 350 Ом.

рис. 4 представлены кривые $\rho(T)$, для которых значение р равно 1/4 (закон Мотта для хаотически распределенных глубоких состояний) и 1/2 (наличие кулоновской щели в плотности состояний вблизи уровня Ферми за счет корреляционных эффектов). Хотя зависимость $\rho(T)$ с показателем p = 1/4 наблюдается в интервале 8 порядков изменения величины ρ (в области 120–20 K), закон изменения $\rho(T)$ в области более низких температур из-за высоких значений ρ остается неизвестным, так как для высокоомных образцов при увеличении напряжения внешнего смещения (U) на кривых $\rho(U)$ наблюдается отступление от закона Ома вблизи величины электрического поля $\mathcal{E} \approx 90 \,\mathrm{B/cm}$ для $T \approx 20 \,\mathrm{K}$ (см. вставку на рис. 4). Это соответствует переходу в область сильных электрических полей и близко к оценочной величине критической напряженности электрического поля $\mathcal{E}_c = kT/ea \approx 10^2 \,\mathrm{B/cm}$ для $a \approx 1 \,\mathrm{нm}$, (здесь a — радиус близких к уровню F_{lim} локализованных состояний [12]). В области низких температур, вблизи 20 К, при увеличении внешнего смещения ($\mathcal{E} > \mathcal{E}_c$) отмечены эффекты электронного переключения — появление ОДС (отрицательного дифференциального сопротивления) S-типа на статической вольт-амперной характеристике переоблученных образцов, а также гистерезистные явления при подаче и уменьшении внешнего смещения. Все это не позволило провести измерения $\rho(T)$ на облученном материале в области гелиевых температур.

Можно ожидать, что для облученного полупроводника с хаотически распределенными РД с глубокими уровнями, как и в аморфных полупроводниках, при описании низкотемпературного участка $\rho(T)$ наиболее вероятен закон Мотта. Поэтому из зависимости вида $\rho(T) \propto \exp[(T_0/T)^{1/4}]$, представленной на рис. 4, было оценено значение

$$T_0 = A(R/a)^3 (E_2/k) \approx 7 \cdot 10^7 \,\mathrm{K},$$

где $A \approx 21.2$ — численный коэффициент теории [12], $a \approx 1$ нм найдено из выражения

$$a \approx h/2\pi \left(2m^*E_i\right)^{1/2}$$

где $m^* = m_{lh} = 0.08 m_0$, а в качестве энергии центра E_i взят уровень энергии ловушки $E5 \ (E_C - 0.90 \ \text{эB})$. С учетом того, что плотность ловушек E5 может быть оценена из соотношения $N(E5) \approx 50 \cdot D \ \text{сm}^{-3}$, это дает $a \approx 1.5$ нм в соответствии с выражением

$$\rho_3 = \rho_{03} \exp(1.73/N_{E5}^{1/3}a).$$

Таким образом, радиус локализации для ловушки *E*5, по которой предположительно осуществляется прыжковая проводимость в облученном протонами GaAs (Cr), оценивается на уровне 2–3 постоянных решетки GaAs, равной 0.565 нм. При этом среднее значение длины прыжка в высокотемпературном пределе составляет около 6.5 нм и порядка 12 нм в области низких температур (вблизи $T \approx 20$ K). Эти исследования показывают, что

Рис. 5. Изохронный отжиг в течение 10 мин облученного протонами GaAs (Cr). Температура измерений T = 300 K. Потоки протонов $D, 10^{17}$ см⁻²: I = 0.04, 2 = 0.1, 3 = 1.5.

в переоблученных протонами образцах GaAs(Cr) электрофизические свойства в широком интервале температур, включая температуру 300 К, определяются прыжковой проводимостью носителей по глубоким состояниям РД.

Изучены особенности восстановления электрофизических свойств облученного протонами GaAs(Cr) при изохронном отжиге в интервале температур (20-750)°С (рис. 5). В слабо облученных образцах первая стадия восстановления ρ в области (150-300)°С совпадает с отжигом Е- и Н-ловушек, предположительно точечных РД, и соответствует возврату уровня Ферми в исходное (до облучения) положение. В сильно облученных образцах вследствие высокой плотности РД уровень Ферми при полном отжиге E- и H-ловушек (до 300°С), по-видимому, остается закрепленным вблизи Flim. Восстановление ρ , наблюдаемое в интервале температур отжига от $\approx 200^{\circ}$ С до $\approx 600^{\circ}$ С, соответствует уменьшению вклада прыжковой проводимости в общий перенос заряда вследствие уменьшения плотности РД. При этом возврат уровня Ферми в положение, близкое к исходному (до облучения) в таком материале, и обратная *n*-*p*-конверсия типа проводимости имеют место при температурах отжига выше 600°С. Это связывается с уменьшением концентрации более сложных РД в GaAs, так называемых P-ловушек ($P1(E_C - 0.35 \Im B)$, $P2(E_C - 0.5 эB)$ и $P3(E_C - 0.72 эB))$ [13], которые удерживают уровень Ферми вблизи предельного положения $F_{\text{lim}} \approx E_V + 0.6 \, \text{эВ}$ в переоблученном материале до температур отжига (500-600)°С. Полного восстановления электрических свойств такого материала не отмечено при отжиге вплоть до 750°С, что, по-видимому, связано с наличием сложных термостабильных дефектов неизвестной природы в таком материале.

Заключение

Показано, что при протонном облучении наблюдается *n*-*p*-конверсия типа проводимости и последующий переход полуизолирующего GaAs(Cr) в низкоомное состояние *р*-типа проводимости (по измерениям термоэдс), при этом основные изменения ρ (около 7 порядков величины вблизи 300 К) связаны с появлением прыжковой проводимости носителей заряда по глубоким состояниям РД. В таких низкоомных слоях при температурах ниже 120 К выявлена прыжковой проводимость с переменной энергией активации, а при температурах вблизи 20 К обнаружены эффекты электронного переключения. Показано, что в облученных протонами образцах обратный переход материала из низкоомного в высокоомное (исходное) состояние происходит в широком температурном интервале за счет отжига Е- и Н-ловушек при температурах (200-300)°С и Р-ловушек в области температур (400-600)°С.

Работа выполнена при частичной поддержке гранта Министерства образования РФ "Фундаментальные исследования в области ядерной техники и физики пучков ионизирующих излучений (№ 97-12.9, 2-2).

Список литературы

- [1] K Wohlleben, W. Beck, Z. Naturforsch. 21a(7), 1057 (1956).
- [2] D. Pons, J.C. Bourgoin. J. Phys. C: Sol. St. Phys., 18, 3839 (1985).
- [3] J.P. Donnelly, F.L. Leonberger. Sol. St. Electron., **20**, 183 (1977).
- [4] В.Н. Брудный, М.А. Кривов, А.И. Потапов. Изв. вузов. Физика, 25(1), 9 (1982).
- [5] V.N. Brudnyi, S.N. Grinyaev, V.E. Stepanov. Physica B, 212, 429 (1995).
- [6] V.N. Brudnyi, M.A. Krivov, A.I. Potapov. Sol. St. Commun., 34, 117 (1980).
- [7] В.М. Зелевинская, Г.А. Качурин, Н.Б. Придачин, Л.С. Смирнов. ФТП, 4(2), 317 (1970).
- [8] В.Н. Брудный, Н.Г. Колин, А.И. Потапов. Изв. вузов. Физика, 35(10), 61 (1992).
- [9] J. Lucovsky. Sol. St. Commun., 3, 299 (1965).
- [10] T.K. Saxena, S. Bala, S.K. Agarwal, P.C. Mathur, K.D. Chaudhurt. Phys. Rev. B, 22, 2962 (1980).
- [11] А.Г. Забродский. ФТП, 11(3), 535 (1977).
- [12] Б.И. Шкловский, А.А. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [13] V.N. Brudnyi, A.V. Gradoboev, V.V. Peshev. Phys. St. Sol. (b), 212, 229 (1999).

Редактор Т.А. Полянская

Electrophysical properties of a proton–irradiated semiinsulating GaAs $\langle Cr \rangle$

V.N. Brudnyi, A.I. Potapov

V.D. Kuznetsov Siberian Physical Technical Institute, 634050 Tomsk, Russia

Abstract The *n* to *p*-type transformation of the conductivity and the decrease of resistivity (ρ) down to 10^2 Ohm \cdot cm have been observed in a semiinsulating GaAs (Cr) ($\rho \cong (3-4) 10^8$ Ohm \cdot cm) upon proton (5 MeV) bombardment up to $D = 2 \cdot 10^{17}$ cm⁻². The temperature dependence of ρ in heavy irradiated samples indicates that the conduction is determined by the electron hopping via the radiation induced states within the temperature range (400÷120) K and by the changeable leugth hopping at $T \leq 120$ K. In proton irradiated low resistivity samples, the electronic switching effects have been revealed near 20 K. Isochronal annealing of the radiation–induced defects is investigated in the temperature range [(20-750)°C].