Обобщенная теория среднего поля для решеточных магнитных систем и ферромагнетизм полупроводников с магнитными примесями

© Е.З. Мейлихов, Р.М. Фарзетдинова

Российский научный центр "Курчатовский институт", 123182 Москва, Россия

E-mail: meilikhov@imp.kiae.ru

(Поступила в Редакцию 8 июня 2004 г. В окончательной редакции 27 сентября 2004 г.)

> Теория среднего поля обобщена для решеточных систем взаимодействующих магнитных моментов путем введения функции распределения случайных локальных магнитных полей для учета неэквивалентности различных узлов решетки. Аналитические и численные методы, соответствующие такому подходу, используются для описания ферромагнетизма немагнитных полупроводников с магнитными примесями.

> Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 03-02-17029, 04-02-16974).

1. Введение

Настоящая работа посвящена обобщению теории среднего поля для решеточных систем парамагнитных ионов с обменным взаимодействием. Хотя идея такого обобщения несложна и оно может быть осуществлено для самых разных систем, в дальнейшем для определенности будем иметь в виду вполне конкретную систему, а именно немагнитный полупроводник, разбавленный магнитными примесями.

Ферромагнетизм в полупроводниках с магнитными примесями интенсивно исследуется в последние годы [1] в связи с перспективами использования таких материалов в электронных устройствах. Однако полного понимания природы этого явления до сих пор не достигнуто. Среди механизмов, приводящих к ферромагнитному упорядочению спинов магнитных примесей, рассматриваются различные виды их косвенного взаимодействия, индуцированные свободными носителями: RKKY-обмен [2], кинематический обмен [1,3] и др. [1]. Кроме того, существует универсальный механизм Бломбергена-Роланда [4], который не требует наличия носителей тока (или высокой их концентрации, приводящей к вырождению носителей) и может быть привлечен для объяснения ферромагнетизма в системах типа GaAs(Mn), GaN(Mn) [5]. Суть этого механизма взаимодействие примесных спинов через виртуальные дырки, возникающие в валентной зоне при переходе из нее электронов на примесные акцепторные уровни. Энергетический порог этого процесса, связанный с конечной энергией Δ ионизации акцепторов, приводит к тому, что энергия соответствующего взаимодействия экспоненциально спадает с расстоянием между примесями. Характерная длина этого спада определяется дебройлевской длиной волны $\lambda_{\Delta} = \hbar (2m\Delta)^{-1/2}$ дырки с энергией Δ и массой *m*. Выражение для энергии *W* косвенного взаимодействия спинов двух примесей, разделенных расстоянием r, имеет вид [5]

$$W(r) = -\frac{J_{pd}^2 m^2 \Delta}{\pi^3 \hbar^4 N^2 r^2} K_2(2r/\lambda_{\Delta}),$$
 (1)

где J_{pd} — энергия контактного взаимодействия примесного спина с дыркой, N — концентрация атомов матрицы, K_2 — функция Макдональда. На больших расстояниях ($r \gtrsim r_0$) асимптотически $K_2(2r/\lambda\Delta) \approx (4r/\pi\lambda_\Delta)^{-1/2} \exp(-2r/\lambda_\Delta)$. Оставляя для этого случая в (1) только наиболее существенную экспоненциальную часть пространственной зависимости энергии взаимодействия, запишем ее в виде

$$W(r) = -J_0 \exp(-r/r_0),$$
 (2)

где $r_0 = \lambda_D/2, \, J_0 \sim J_{pd}^2 m^2 \Delta/\pi^3 \hbar^4 N^2 r_0^2$ или

$$J_0 \sim \frac{1}{64\pi^3 N r_0^3} \left(\frac{J_{pd}^2}{\Delta}\right). \tag{3}$$

Сходное выражение для энергии взаимодействия магнитных примесей используется и при исследовании модели кинематического обмена [1]

$$W(r) = -J_0 \exp(-r^2/2r_0^2),$$

$$J_0 = J_{pd}/(2\pi)^{3/2} N r_0^3,$$
(4)

где r_0 — характерная длина взаимодействия.

2. Обобщенная теория среднего поля

Цель настоящей работы — исследовать магнитное состояние системы магнитных моментов, взаимодействующих друг с другом по "обменным" законам (2), (4). При этом, однако, необходимо учитывать, что в реальных системах магнитные примеси располагаются (по крайней мере до тех пор, пока их концентрация не становится слишком высокой) в узлах решетки-матрицы. С этой точки зрения рассматриваемая система близка к системе магнитных диполей, восходящей к Изингу. Как известно, модель Изинга — решеточная система магнитных моментов двух возможных (противоположных) направлений, которые взаимодействуют только со своими ближайшими соседями.

Однако в нашем случае нельзя ограничиться учетом только ближайших соседей, поэтому свойства рассматриваемых магнитных систем анализировались в рамках обобщенной теории среднего поля, а требуемая для этого функция распределения локальных полей (см. далее) находилась путем численного расчета.

Необходимость обобщения традиционной теории среднего поля связана с тем, что (кроме ее известного дефекта — пренебрежения корреляцией моментов) в ней предполагается эквивалентность всех узлов решетки. Это выражается в том, что среднее поле считается одинаковым во всех узлах, хотя на самом деле оно меняется от узла к узлу случайным образом. В связи с этим естественно попытаться учесть эту случайность. Соответствующий подход был впервые предложен в работе [6] при рассмотрении системы случайно расположенных магнитных диполей. Позже он был подробно проанализирован в серии работ [7], где отправным пунктом была определяемая *ad/hoc* функция распределения энергий парного взаимодействия. Суть такой обобщенной модели состоит в замене стандартного уравнения среднего поля

$$j = \operatorname{th}\left(\frac{\lambda j}{kT}\right) \tag{5}$$

(где j — приведенная намагниченность системы, λ — постоянная среднего поля) его обобщенным аналогом

$$j = \int_{-\infty}^{\infty} \operatorname{th}\left(\frac{\mu H}{kT}\right) F(j;H) dH.$$
(6)

Здесь F(j;H) — функция распределения локальных магнитных полей H, создаваемых в месте расположения одного из магнитных моментов системы (не обязательно регулярной) с намагниченностью j всеми остальными магнитными моментами (равными μ). Ясно, что при вычислении этой функции более последовательно было бы исходить не из определяемой произвольно функции распределения энергий W парного взаимодействия магнитных моментов (как это сделано в [7]), а из пространственной зависимости энергии такого взаимодействия (например, вида (2)). Заметим, что уравнение среднего поля (5) эквивалентно уравнению

$$j = \operatorname{th}\left[\frac{\mu\bar{H}(j)}{kT}\right], \quad \bar{H}(j) = \int_{-\infty}^{\infty} HF(j;H)dH.$$
 (7)

Для квадратной и простой кубической решеток, рассматриваемых в рамках модели Изинга, функции распределения F(j;H) могут быть легко найдены и записаны в явном виде. После этого с помощью уравнения (6) можно исследовать магнитные свойства соответствующей системы.¹ В нашем случае аналитическое выражение для F(j;H) удается получить лишь в (не самом актуальном)

¹ Другие подходы к рассматриваемой проблеме и обширную библиографию можно найти в обзорах [8-10]. случае высокой концентрации примесей, поэтому были использованы численные расчеты.

3. Численный расчет функций распределения

Модельная система для расчета функций распределения случайных полей "создавалась" путем равномерного случайного размещения спинов в узлах решетки, находящихся внутри области достаточно большого радиуса (общее число спинов не менее 10⁴), после чего рассчитывалось магнитное поле Н в центре этой области. Функции F(j;H) находились путем перебора большого числа (около 10⁴) реализаций такой системы. Найденные в результате численного расчета функции распределения F(j;H) для трехмерных систем, в одной из которых менялся параметр Nr₀³ (при постоянных значениях j = 1, p=0.1), в другой — параметр p (при постоянных значениях j = 0.1, $Nr_0^3 = 0.5$), а в третьей — намагниченность і (при постоянных значениях $Nr_0^3 = 0.1, p = 0.1$), приведены на рис. 1–3. Видно, что при $Nr_0^3 \gtrsim 1$ эти функции близки к гауссовским. Вне указанной области концентраций функции распределения F(j;H) теряют гауссовский "облик". Наибольшие изменения претерпевает функция F(1; H): при $Nr_0^3 \ll 1$ она распадается на пики, соответствующие отдельным узлам решетки.

Аналитический расчет функции распределения

При $Nr_0^D \gtrsim 1$ (когда число узлов решетки, попадающих в область эффективного взаимодействия, существенно больше z) функция распределения F(j;H), как следует из результатов численного моделирования, похожа на гауссовскую. Это неудивительно, так как в данном случае локальное поле есть сумма большого числа независимых слагаемых с существенной дисперсией, что, согласно предельной теореме теории вероятностей, и ведет к гауссовской функции распределения.

Чтобы найти соответствующее аналитическое выражение для функции F(j;H), будем исходить из того, что в рассматриваемом случае дискретностью решетки можно пренебречь, и учтем лишь то обстоятельство, что минимальное расстояние между моментами не может быть меньше постоянной решетки a.

В такой модели локальные эффективные поля $h(r) = -W(r)/\mu$ создаются магнитными моментами, случайно расположенными в любой точке пространства. Эти поля различны в разных точках, и случайная величина их суммы H может быть охарактеризована функцией распределения F(j;H), которая, вообще говоря, зависит от намагниченности системы j, определяемой средней долей $\eta = (1/2)(1 + j)$ моментов, направленных вдоль намагниченности системы (F(1;H) — функция распределения для случая, когда все моменты параллельны друг другу).

Рис. 1. Функции распределения F(1; H) для полностью намагниченных (j = 1) частично "заселенных" (p = 0.1) кубических решеток изинговских моментов, взаимодействующих по механизму Бломбергена–Роланда, с различными значениями параметра Nr_0^3 . При $Nr_0^3 \gtrsim 1$ эти функции близки к гауссовским с параметрами H_j и σ , концентрационные зависимости которых представлены на нижней левой панели.

Для определения вида этой функции используем метод Маркова [11], согласно которому

$$F(j;H) = \frac{1}{2\pi} \int_{-\infty}^{\infty} A(q) \exp(-iqH) dq,$$

$$(q) = \lim_{M_{\max} \to \infty} \left[\int_{(\xi)} \int_{r=a}^{r \max} \exp[iqh_{\xi}(r,\xi)]\tau(r,\xi) drd\xi \right]^{M_{\max}},$$
(8)

где

A

$$h_{\xi}(r,\xi) = \xi h(r), \quad h(r) = h_J \exp(-r/r_0)$$
 (9)

— эффективное магнитное поле, которое создается магнитным моментом, отстоящим от начала координат

на случайное расстояние r, $h_J = J/\mu$. Случайный параметр ξ принимает значения ± 1 (с вероятностью η и $(1 - \eta)$ соответственно) и определяет направление момента, $\tau(r, \xi)$ —функция распределения случайных значений расстояния r и параметра ξ , M_{max} — число магнитных моментов в сфере радиуса r_{max} , по объему которой производится интегрирование. Если далее предположить, что распределения r и ξ равномерны и не коррелированы, то

$$\tau (r, \xi) dr d\xi = [3r^2/(r_{max}^3 - a^3)] dr [(1 - \eta)\delta(\xi + 1)
 + η \delta(\xi - 1)] d\xi$$
(трехмерная система), (10)
 $\tau (r, \xi) dr d\xi = [r/(r_{max}^2 - a^2)] dr [(1 - \eta)\delta(\xi + 1)
 + η \delta(\xi - 1)] d\xi$ (двумерная система). (11)

Рис. 2. Функции распределения F(0.1; H) для слабо намагниченных (j = 0.1) частично "заселенных" (p = 0.01-1) кубических решеток изинговских моментов, взаимодействующих по механизму Бломбергена–Роланда (a) и по механизму кинематического обмена (b), с $Nr_0^3 = 0.5$. При $p \gtrsim 0.1$ эти функции близки к гауссовским.

(13)

Подставляя (10) в (8), получаем

$$A(q) = \exp[-pNC(q)], \qquad (12)$$

где

$$C(q) = 4\pi \int_{a}^{\infty} \{1 - \cos[qh(r)] - i \cdot j \sin[qh(r)]\} r^2 dr$$

(трехмерная система),

$$C(q) = 2\pi \int_{a}^{\infty} \{1 - \cos[qh(r)] - i \cdot j \sin[qh(r)]\} r dr$$
 (двумерная система). (14)

Соотношения (12)–(14) не приводят к простым аналитическим выражениям для функции распределения F(j; H). Поэтому для определения последней мы используем "приближение малых q", основанное на том обстоятельстве, что в обратном Фурье-преобразовании (8) область больших значений q несущественна. В рамках этого подхода функции $\cos[qh(\rho, \alpha)]$ и $\sin[qh(\rho, \alpha)]$, подлежащие интегрированию в (13), (14), заменяются их приближенными степенными разложениями по малому аргументу qh (до первого не исчезающего по qhслагаемого). В этом приближении интегралы в (13), (14) легко вычисляются, и при $Nr_0^D \gg 1$ (т.е. при $a \ll r_0$) имеем

$$C(q) = 8\pi r_0^3 \left[\frac{1}{16} (qh_J)^2 - ij \cdot qh_J \right]$$
(3D),
$$C(q) = 2\pi r_0^2 \left[\frac{1}{8} (qh_J)^2 - ij \cdot qh_J \right]$$
(2D). (15)

При этом функция распределения F(j;H) оказывается гауссовской

$$F(j;H) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(H-jH_j)^2}{2\sigma^2}\right], \quad (16)$$

Рис. 3. Функции распределения F(j; H) для частично "заселенных" (p = 0.1) кубических решеток изинговских моментов, взаимодействующих по механизму Бломбергена–Роланда (2), с $Nr_0^3 = 0.1$ при различной намагниченности. При $j \ll 1$ функция распределения близка к гауссовской, с ростом j еелевое крыло постепенно "обрезается", при j = 1 функция распределения от нуля только для H > 0.

где

$$H_j/h_J = 8\pi p N r_0^3,$$

 $\sigma/h_J = \sqrt{\pi p N r_0^3}$ (3D, закон взаимодействия (2)),
 $H_J/h_J = (4\pi)^{3/2} p N r_0^3$
(17)

 $\sigma/h_J = (\pi/2)^{3/4} \sqrt{pNr_0^3}$ (3D, закон взаимодействия (4)), (18)

$$H_j/h_J = 2\pi p N r_0^2,$$

 $\sigma/h_J = (\pi/2)^{1/2} \sqrt{pNr_0^2}$ (2D, закон взаимодействия (2)), (19)

$$H_j/h_J = 4\pi p N r_0^2,$$

$$\sigma/h_J = (\pi/2)^{1/2} \sqrt{pNr_0^2}$$
 (2D, закон взаимодействия (4)). (20)

С уменьшением намагниченности максимум $(H = jH_j)$ распределения F(j;H) линейно сдвигается в сторону меньших полей, а его ширина остается неизменной. Полученные концентрационные зависимости параметров H_j , σ гауссовского распределения подтверждаются приведенными на рис. 1 (нижний левый фрагмент) результатами их модельного расчета, показывающими, что они практически совпадают с предсказываемыми соотношениями (17). Столь же

хорошее согласие наблюдается и в остальных случаях (закон взаимодействия (4) или двумерная система).

Использованное приближение хорошо работает, если в область эффективного взаимодействия попадает большое число магнитных моментов, т.е. при $pNr_0^D \gtrsim 1$, однако последний критерий зависит от намагниченности j системы. Так, при j = 1 эффективное поле H может быть лишь положительным, т.е. F(1; H < 0) = 0. Гауссовская функция (16) последнему условию не удовлетворяет, однако она экспоненциально мала в области H < 0, если $H_j \gtrsim \sigma$ или (согласно (17)–(20)) $pNr_0^3 \gtrsim 1$. Если же j = 0, то функция распределения четна относительно H = 0 и может сохранять гауссовский вид и при гораздо меньших значениях параметра pNr_0^0 .

5. Магнитные свойства решеточных систем

Магнитные свойства рассматриваемых систем определяются обобщенным уравнением среднего поля (6). Если функция распределения F(j; H) близка к гауссовской, это уравнение сводится к традиционному уравнению среднего поля (5). Действительно, в этом случае $\bar{H} = jH_j$ и фигурирующая в (5) постоянная среднего поля $\lambda = \mu H_j \propto J_0 p N r_0^D$. Это приводит к обычной концентрационной зависимости температуры Кюри: $T_C \propto J_0 p N r_0^D$. Когда же функция распределения отлична от гауссовской (что, как мы видели, происходит при $p N r_0^3 \ll 1$), следует ожидать отклонений от традиционной теории.

Результаты, полученные путем решения уравнения (6) с функциями распределения, найденными при численном расчете, подтверждают этот вывод (рис. 4, 5). При $Nr_0^D \sim 1$ явные отклонения от среднеполевых концентрационных зависимостей температуры Кюри наблюдаются

Рис. 4. Зависимости температуры Кюри T_C кубической решетки с $Nr_0^3 = 0.5$ от заселенности p ее узлов изинговскими магнитными моментами, взаимодействующими по механизму Бломбергена–Роланда (BR) или кинематического обмена (KE).

Рис. 5. Зависимость температуры Кюри T_C кубической решетки с $Nr_0^3 = 0.5$ от заселенности p ее узлов изинговскими магнитными моментами, взаимодействующими по закону (2). Правая шкала соответствует значению $J_0 = 20$ meV. На вставке — то же в логарифмических координатах.

в области малых концентраций p, причем такое отклонение для более медленно спадающего с расстоянием взаимодействия (2) происходит, как и следовало ожидать, в области меньших значений p (рис. 4). Линейная часть зависимости $T_C(p)$ в обоих случаях сдвинута вправо, что в экспериментальной ситуации может создать впечатление о наличии пороговой концентрации $p_c \sim 0.01$ (3D), ниже которой система остается парамагнитной и при T = 0. В действительности же основное состояние всегда ферромагнитно ($J_0 > 0$!).

В качестве примера, иллюстрирующего полученные результаты, рассмотрим систему GaAs(Mn). Этот немагнитный полупроводник с магнитными примесями наиболее изучен экспериментально [1,2,12]. Точное значение энергии контактного взаимодействия J_{pd} в GaAs(Mn) не установлено: имеющиеся оценки колеблются в диапазоне $J_{pd} = 1 - 3 \, \text{eV} \, [2]$. Энергия ионизации Мп-акцепторов составляет $\Delta \approx 0.11 \, \text{eV}$ [13], что при эффективной массе дырок $m \approx 0.5 m_0$ дает для эффективной длины взаимодействия $r_0 \approx 4.3 \,\text{\AA}$ — величину, близкую к периоду решетки, которая в GaAs равна $a \approx 5.6 \text{ Å}$ (наименьшее расстояние между атомами Mn, замещающими атомы Ga, составляет $a/\sqrt{2} \approx 4$ Å). Таким образом, в трехмерном случае $Nr_0^3 \sim 1$, характерная энергия (3) косвенного взаимодействия спинов Mn составляет $J_0 \sim (1/64\pi^3) (J_{pd}^2/\Delta) = 5-40$ meV. Правая шкала на рис. 5 соответствует абсолютной величине температуры Кюри, пересчитанной исходя из среднего (для приведенного интервала) значения $J_0 = 20 \,\mathrm{meV}$. Видно, что расчет неплохо описывает экспериментальные результаты,² относящиеся к системе GaAs(Mn) [12]. Схожие результаты получаются и для системы с примесями, взаимодействующими по механизму кинематического обмена. В этом случае из (4) следует $J_0 \sim 200$ meV, что на порядок больше, чем для механизма BR. Это, однако, означает, что предсказываемые абсолютные значения температуры Кюри в обоих случаях одинаковы, так как из рис. 4 видно, что соответствующие значения безразмерного параметра kT_C/J_0 для механизма KE как раз на порядок ниже, чем для механизма BR.

6. Заключение

Результаты традиционной теории среднего поля могут быть существенно уточнены путем введения функции F(H) распределения случайных локальных магнитных полей как для регулярных, так и для нерегулярных (случайных) систем с магнитным взаимодействием. Эта функция имеет ясную физическую интерпретацию и помимо намагниченности системы позволяет найти ее энергию $E = -\int \mu HF(H)dH$, а значит, и другие характеристики, такие как свободная энергия, теплоемкость и т. д. В системах с дальнодействием (таких, где локальное поле создается большим числом взаимодействующих магнитных моментов) функция F(H) оказывается гауссовской (независимо от намагниченности *j* системы), а вся информация о характере взаимодействия и средней концентрации взаимодействующих моментов содержится лишь в двух параметрах этого распределения положении его максимума $H = jH_j$ и ширине σ . В пренебрежении корреляциями магнитных моментов (что и отражает приближенность обсуждаемого подхода) последние могут быть найдены посредством известной процедуры [11], простота которой и предопределяет полезность такого подхода. Соответствующее улучшение традиционной теории среднего поля можно наблюдать при сравнении результатов такой обобщенной модели с точными результатами, известными для простых случаев.

Особенно существенны коррективы, которые обобщенная модель среднего поля вносит при рассмотрении "разреженной" системы, где расстояние между взаимодействующими моментами сравнимо с длиной взаимодействия. В этом случае функция распределения становится существенно негауссовской, аналитические расчеты теряют свою простоту и для вычисления функции F(H) необходимы численные расчеты с использованием той или иной модельной системы.

Хотя общие принципы такого подхода были описаны в [7], он лишь недавно был использован для описания магнитных свойств конкретных двумерных и трехмерных систем различного типа [14]. В настоящей работе мы применили его для расчета свойств решеточной системы магнитных моментов, взаимодействие которых экспоненциально зависит от расстояния между ними. Одним из примеров такой системы может быть немагнитный полупроводник с магнитными примесями. Возникающее в этом случае магнитное упорядочение вполне описывается в рамках рассматриваемого обобщения теории среднего поля.

² Применение длительного низкотемпературного отжига значительно увеличивает температуру Кюри по сравнению с исходными образцами. Не исключено, что немонотонность приведенной зависимости $T_C(p)$ связана с недостаточной длительностью процесса отжига в [13].

Список литературы

- J. Konig, J. Schliemann, T. Jungwirth, A.H. MacDonald. In: Electronic Structure and Magnetism of Complex Materials / Ed. D.J. Singh, D.A. Papaconstantopoulos. Springer Verlag (2002). Cond-mat/0111314; библиография по этой проблеме размещена на сайте http://unix12.fzu.cz/ms/allpubl/php?.
- [2] T. Dietl, H. Ohno, F. Matsukara, J. Cibert, D. Ferrand. Science 287, 1019 (2000).
- [3] P.M. Krstajic, V.A. Ivanov, F.M. Peeters, V. Fleurov, K. Kikoin. Europhys. Lett. 61, 235 (2003).
- [4] N. Bloembergen, T.J. Rowland. Phys. Rev. 97, 1679 (1955).
- [5] V.I. Litvinov, V.K. Dugaev. Phys. Rev. Lett. 86, 5593 (2001).
- [6] M.W. Klein, R. Brout. Phys. Rev. 132, 2412 (1963).
- M. Thomsen, M.F. Thorpe, T.C. Choy, D. Sherrington. Phys. Rev. B 30, 250 (1984); T.C. Choy, D. Sherrington, M. Thomsen, M.F. Thorpe. Ibid. 31, 7355 (1985); M. Thomsen, M.F. Thorpe, T.C. Choy, D. Sherrington. Ibid. 33, 1931 (1986).
- [8] B.E. Vugmeister, M.D. Glinchuk. Rev. Mod. Phys. 42, 993 (1990).
- [9] A.P. Young, J.D. Reger, K. Binder. In: Monte-Carlo Methods on Statistical Mechanics / Ed. K. Binder. Springer (1992).
- [10] Вик.С. Доценко. УФН 165, 481 (1995).
- [11] S. Chandrasekhar. Rev. Mod. Phys. 15, 1 (1943).
- [12] K.W. Edmonds, K.Y. Wang, R.P. Campion et al. Appl. Phys. Lett. 81, 3010 (2002).
- [13] S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, H. Hori, J. Appl. Phys. **91**, 7911 (2002); H. Hori, S. Sonoda, T. Sasaki, Y. Yamamoto, S. Shimizu, K. Suga, K. Kindo. Physica B **324**, 142 (2002).
- [14] Е.З. Мейлихов. ЖЭТФ 124, 650 (2003); Е.З. Мейлихов, Р.М. Фарзетдинова. Ibid. 124, 656 (2003); Е.З. Мейлихов. Ibid. 125, 1329 (2004); Е.З. Мейлихов. Письма в ЖЭТФ 77, 675 (2002); Е.Z. Meilikhov, R.M. Farzetdinova. J. Magn. Magn. Mater. 268, 1–2, 237 (2004).