К вопросу о стабилизации электрофизических свойств в компенсированном кремнии при облучении γ -квантами ⁶⁰Со

© М.С. Юнусов[¶], М. Каримов, М.А. Джалелов

Институт ядерной физики академии наук Республики Узбекистан, 702132 Ташкент, Улугбек, Узбекистан

(Получена 27 мая 1999 г. Принята к печати 2 августа 2000 г.)

Исследуется изменение концентрации носителей заряда в компенсированном кремнии (полученном предварительным облучением) под воздействием облучения γ -квантами. Обнаружено, что скорость удаления носителей заряда в компенсированном кремнии меньше, чем в контрольном образце. Обсуждается новый механизм, обусловливающий радиационную стабильность электрофизических свойств компенсированного кремния.

В кремнии дефекты, создающие глубокие энергетические уровни (ГЭУ), являются одним из способов формирования необходимого комплекса электрофизических и фотоэлектрических свойств облучаемого материала. Показано существенное влияние наличия примесей на радиационную стабильность параметров дефектов, создающих ГЭУ в кремнии. Этот факт в большинстве опубликованных работ [1-6] объясняется одновременной реализацией двух механизмов под действием радиации: переходом части электрически неактивных атомов примеси в электрически активное состояние (канал 1) и усилением ухода первичных радиационных дефектов: вакансий (V) и собственных междоузельных атомов (I) на дополнительные стоки (канал 2) в легированном материале (в качестве таких стоков выступают границы раздела между примесными микровключениями и матрицей).

Следует отметить, что уменьшение концентрации радиационных компенсирующих центров (в результате реализации 1 и 2 каналов) и одновременное увеличение концентрации компенсирующих примесных центров (в результате реализации 1-го канала) в процессе облучения не является самой главной причиной уменьшения скорости удаления носителей в легированном кремнии с ГЭУ. Использование этой идеи в решении проблемы радиационной стабильности (по проводимости) легированного материала нуждается в своем доказательстве, так как механизм повышения радиационной стабильности материала с ГЭУ пока остается не до конца выясненным. Причиной этого является недостаточная изученность поведения примесей в кремнии с ГЭУ после термодиффузии в зависимости от скорости охлаждения, повторной термообработки и воздействия проникающей радиации. Отметим, что любой из вышеуказанных факторов приводит к изменению подвижности и концентрации носителей заряда (степени компенсации), а также к изменению условий их рекомбинации. Это вызывает значительные изменения объемно-градиентных явлений, обусловленных неравномерным распределением основных и технологических примесей в компенсированном кремнии [7,8]. Каждый

Цель работы — выявление процессов, приводящих к радиационной стабильности электрофизических свойств компенсированного материала.

Компенсированный кремний с ГЭУ получался путем облучения двумя видами радиации, отличающимися особенностью дефектов, генерируемых ими в материале, в частности нейтронами атомного реактора (образцы типа 1) и γ -квантами ⁶⁰Со (образцы типа 2), т.е. компенсированный кремний получался путем компенсации радиационными центрами. Тем самым в образцах типа 2 исключались оба канала воздействия радиации (для реализации 1 и 2 каналов в образцах отсутствует скопление примесных атомов, создающих ГЭУ). В образцах типа 1 исключался 1-й канал и был оставлен 2-й канал (в образцах для реализации 2-го канала имеются области разупорядочения).

В качестве исходного материала использовался n-Si $\langle P \rangle$ с $\rho \approx 3 \,\text{Om} \cdot \text{см}$, выращенный методом Чохральского с плотностью дислокаций $\sim 10^4 \,\text{cm}^2$. Различная степень микронеоднородности по проводимости осуществлялась путем изменения степени компенсации примеси и изменения проводимости кремния, облучением быстрыми нейтронами (образцы типа 1) и γ -квантами (образцы типа 2). При этом степень компенсации $K = N_{\text{RD}}/n$ (где N_{RD} — концентрация компенсации $x = 0.2 \div 0.9$. Параметры образцов типа 1 и 2 составляла $K = 0.2 \div 0.9$. Параметры образцов приведены в таблице. Расчет размеров (r) и амплитуды флуктуации (Δ_0) в зависимости от концентрации радиационных центров в кремнии про-

микроучасток в зависимости от степени компенсации имеет положительный или отрицательный потенциал относительно соседнего, т.е. в объеме кристалла создается случайный электрический потенциал, который существенно влияет на явления переноса носителей заряда. Однако, несмотря на это, отсутствуют целенаправленные исследования по изучению роли градиента концентрации носителей заряда и микронеоднородности по проводимости в радиационной стабильности электрофизических свойств компенсированного материала с ГЭУ.

[¶] E-mail: yunusov@suninp.tashkent.su

Тип образцов	Удельное сопротивление, $ ho, \mathrm{Om} \cdot \mathrm{cm}$	Подвижность носителей заряда, μ , см 2 /B \cdot с	Концентрация носителей заряда, <i>n</i> , см ⁻³	Степень компен- сации, <i>К</i>	Относительный разброс значений концентрации носи- телей заряда, δ ,%	Амплитуда флуктуации, $\Delta_0,$ эВ	Размер флуктуации, <i>r</i> , 10 ⁻⁵ см
Исходный образец (до предварительного облучения)	2.8	1500	$1.5 \cdot 10^{15}$		13		
Образец типа 1 (нейтронное облучение)*	4.6 12 32	1500 1390 1150	$\begin{array}{c} 8.5\cdot 10^{14} \\ 3.7\cdot 10^{14} \\ 1.7\cdot 10^{14} \end{array}$	0.43 0.75 0.87	23 54 117	0.0053 0.022 0.031	0.97 2.00 3.54
Образец типа 2 (γ -облучение)	3.7 8.5 16 33	1400 1270 1000 900	$\begin{array}{c} 1.2\cdot 10^{15} \\ 5.8\cdot 10^{14} \\ 3.9\cdot 10^{14} \\ 2.1\cdot 10^{14} \end{array}$	0.2 0.61 0.74 0.85	16 35 51 95	0.0060 0.016 0.021 0.029	0.59 1.40 1.94 3.08

Параметры образцов типа 1 и 2 при $T = 300 \, \text{K}$

Примечание. *При расчете амплитуды и размера флуктуации, а также разброса концентрации в образцах типа 1 не учтено влияние областей разупорядочения.

водился по известным формулам [9]:

$$r = (N_{\rm RD})^{1/3}/n^{2/3}, \quad \Delta_0 = (e^2 \chi)(N_{\rm RD})^{2/3}/n^{1/3},$$

где e — заряд электрона, χ — диэлектрическая проницаемость. Разброс величины концентрации носителей между высокоомной (n^{max}) и низкоомной (n^{min}) областями рассчитывался также по известным формулам [10]:

$$\delta = 2(n^{\max} - n^{\min})/(n^{\max} + n^{\min}).$$

Как видно из таблицы, на основе кремния *n*-типа с одинаковыми исходными параметрами путем облучения (нейтронами и γ -квантами) получены частично компенсированные образцы (типа 1 и 2) с различными степенями микронеоднородности по проводимости. С ростом концентрации радиационных центров повышается разброс концентрации носителей заряда δ , амплитуда Δ_0 и размер *r* флуктуаций, а также понижается подвижность носителей заряда μ .

Для сравнения параллельно исследовались контрольные (предварительно не облученные) образцы кремния с близкой проводимостью n-Si $\langle P \rangle$ (образцы типа 3).

Начальная (10%-ая) скорость удаления носителей заряда ($\Delta n/\Phi$) при γ -облучении с мощностью дозы ~ 2000 P/с исследовалась методом измерения коэффициента Холла и удельного сопротивления.

На рис. 1 приведены зависимости начальной скорости удаления носителей в γ -облученном кремнии от начальной концентрации носителей (до γ -облучения). Полученные экспериментальные результаты удовлетворительно описываются следующими зависимостями для образцов:

типа 1 —
$$\Delta n/\Phi = 3 \cdot 10^{-20} n$$
, (1)

гипа 2 —
$$\Delta n/\Phi = 5 \cdot 10^{-15} n^{0.66}$$
, (2)

типа 3 —
$$\Delta n/\Phi = 4.2 \cdot 10^{-11} n^{0.4}$$
, (3)

где n — начальная концентрация электронов (при T = 300 K).

При использовании выражений (1)–(3) необходимо учитывать то, что они справедливы в интервале концентрации $10^{14} \div 2 \cdot 10^{15}$ см⁻³. Следует отметить, что полученные результаты в образцах типа 3 практически совпадают с данными [11].

Как видно из рис. 1, начальная скорость удаления носителей $\Delta n/\Phi$ при одинаковой концентрации носителей заряда в образцах типа 1 значительно ниже, чем в образцах типа 2, и это объясняется усилением ухода первичных радиационных дефектов на стоки (области разупорядочения) [12–14]. Также видно, что величина $\Delta n/\Phi$ значительно ниже в компенсированных образцах (прямые 1 и 2), чем в контрольном кремнии (прямая 3),

Рис. 1. Зависимости начальной скорости удаления носителей заряда при облучении γ -квантами ⁶⁰Со от начальной концентрации носителей в образцах компенсированного кремния, полученных облучением быстрыми нейтронами (*I*), γ -квантами (*2*) и в контрольном кремнии (*3*).

Физика и техника полупроводников, 2001, том 35, вып. 3

Рис. 2. Модели неоднородных n^+ - и *n*-областей, образующихся в *n*-Si (P), компенсированном радиационными центрами до (*a*) и после повторного γ -облучения (*b*). $E_1 = E_c - 0.34$ эВ, $E_2 = E_c - 0.44$ эВ.

причем $\Delta n/\Phi$ падает с возрастанием степени компенсации в образцах типов 1 и 2. Для объяснения этого факта предлагается барьерная модель (рис. 2). Суть этой модели заключается в следующем.

При современной технологии выращивания кристаллов кремния из-за неравномерного распределения основных легирующих примесей фосфора (или бора) и технологических примесей кислорода в объеме кристалла образуются низкоомные (n^+) и высокоомные (n) области проводимости. Даже при равномерном распределении концентрации компенсирующих радиационных дефектов при облучении таких кристаллов (в виду исходного неравномерного распределения примесей, в данном случае фосфора) происходит неравномерная компенсация электрически активных примесей в образце. Причем с ростом степени компенсации, как указано выше (см. таблицу), возрастает амплитуда разброса концентрации носителей заряда между этими областями. Наличие контактов между n⁺- и n-областями приводит к возникновению потенциального барьера (Δ_0). Считалось, во-первых, что при компенсации примесей в кремнии (типа 1 и 2) образуются центры с E_c – 0.18 эВ (А-центры), E_c – 0.23 эВ (дивакансии), $E_c - 0.34$ эВ и $E_c - 0.44$ эВ (*E*-центры) [15]; во-вторых, уровень Ферми в *n*⁺-области находится между уровнями $E_c - 0.34$ эВ и $E_c - 0.44$ эВ, т.е. энергетические уровни А-центра и дивакансии находятся над уровнем Ферми, и поэтому эти уровни полностью ионизованы, что касается центров с $E_c - 0.34$ эВ и $E_c - 0.44$ эВ, то ввиду их расположения относительно уровня Ферми они заполнены электронами. В п-области уровень $E_c - 0.34$ эВ частично ионизован, а центр с $E_c - 0.44$ эВ заполнен электронами (рис. 2, *a*).

При γ -облучении (на начальных этапах) *n*-области кристалла (типа 1 и 2) становятся более высокоомными, а n^+ -области, практически не чувствуя компенсацию носителей, остаются такими же низкоомными как и до облучения, т.е. благодаря существенному различию степени компенсации примесей в n^+ - и *n*-областях в ком-

пенсированном кремнии растет высота потенциального барьера между ними $\Delta_0 \rightarrow \Delta$ (в нашем случае *A*-центры и дивакансии не участвуют в удалении носителей, поскольку положение уровня Ферми $E_{\rm F} > E_c - 0.23 \, {
m sB})$ (рис. 2). Рост высоты барьера $\Delta_0 \rightarrow \Delta$ приводит к росту концентрации ионизованных центров $E_c - 0.34$ эВ в *п*-области (соответственно к уменьшению степени заполнения). Освободившиеся (в результате ионизации центров *E_c* – 0.34 эВ в *n*-областях) электроны захватываются глубокими радиационными дефектами $E_c - 0.44$ эВ. Концентрация носителей заряда в зоне проводимости неоднородного (компенсированного) материала остается практически неизменной с ростом дозы облучения до тех пор, пока концентрация освободившихся электронов (в результате ионизации уровня $E_c - 0.34$ эВ в *п*-областях) не сравняется с концентрацией радиационных дефектов, образующихся, в данном случае, в процессе облучения ү-квантами, т.е. пока не происходит существенное изменение положения уровня Ферми в низкоомной *n*⁺-области, поскольку в таком неоднородном материале в основном токопроводящей является именно n^+ -область [16].

Таким образом, снижение скорости удаления носителей заряда под действием γ -квантов можно объяснить в основном радиационным усилением флуктуационных барьеров между низко- и высокоомной областями и усилением ухода части образующихся дефектов типа Vи I на стоки в компенсированном кремнии с глубокими уровнями.

Список литературы

- Е.Ф. Уваров, М.В. Чукичев. В сб.: Радиационная физика неметаллических кристаллов (Минск, Наука и техника, 1970) с. 81.
- [2] М.К. Бахадырханов, С.З. Зайнабиддинов, А.Т. Тешабаев. ФТП, 11, 285 (1977).
- [3] М.К. Бахадырханов, Ф.М. Талипов. ФТП, 16, 574 (1982).
- [4] С.З. Зайнабиддинов, Э.Э. Рубинов. Нейтронно-трансмутационное легирование кремния (Ташкент, Фан, 1983).
- [5] К.П. Абдурахманов, Р.Ф. Витман, Х.С. Далиев, А.А. Лебедев, Ш.Б. Утамурадова. ФТП, 19, 1617 (1985).
- [6] С.З. Зайнабиддинов, Х.С. Далиев. Дефектообразование в кремнии (Ташкент, Изд-во Ташк. гос. ун-та, 1993).
- [7] И.Д. Конозенко, А.К. Семенюк, В.И. Хиврич. Радиационные эффекты в кремнии (Киев, Наук. думка, 1974) с. 199.
- [8] В.Л. Винецкий, Г.А. Холодарь. Радиационная физика полупроводников (Киев, Наук. думка, 1979) с. 336.
- [9] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [10] Дж. Миз, П. Глэрон. В кн.: Нейтронное трансмутационное легирование полупроводников, под ред. Дж. Миза (М., Мир, 1982) с. 239.
- [11] E. Sonder, L.C. Templeon. J. Appl. Phys., 36, 1811 (1965).
- [12] В.В. Болотов, А.В. Васильев, В.П. Кожевников, С.А. Смагулова, Л.С. Смирнов. ФТП, **12**, 1104 (1978).
- [13] Легирование полупроводников методом ядерных реакций, под ред. Л.С. Смирнова (Новосибирск, Наука, 1981) с. 181.

- [14] А.В. Васильев, С.А. Смагулова, С.С. Шаймеев. ФТП, 16, 140 (1982).
- [15] А.В. Васильев, С.А. Смагулова, С.С. Шаймеев. ФТП, 16, 1983 (1982).
- [16] М.К. Шейнкман, А.Я. Шик. ФТП, 10, 209 (1976).

Редактор Т.А. Полянская

About the radiation stability of electrophysical properties in a compensated silicon under γ -rays ⁶⁰Co irradiation

M.S. Yunusov, M. Karimov, M.A. Zhalelov

Institute of Nuclear Physics, Academy of Sciences of Uzbekistan 702132 Tashkent, Ulugbek, Uzbekistan

Abstract Change in the concentration of the carrier removal rate in a compensated silicon under the γ -ray irradiation is investigated. It has been found that the carrier removal rate in the compensated silicon is lower than that of control samples. A new mechanism resulting in the radiation stability of electrophysical properties of the compensated silicon is discussed.