Комбинационное рассеяние света в монокристалле $Bi_3B_5O_{12}$

© А.В. Егорышева, В.И. Бурков, В.С. Горелик, Ю.Ф. Каргин, В.В. Колташев, В.Г. Плотниченко

Физический институт им. П.Н. Лебедева Российской академии наук, 117924 Москва, Россия

(Поступила в Редакцию 8 февраля 2001 г.)

Впервые исследованы спектры комбинационного рассеяния монокристаллов $Bi_3B_5O_{12}$. Проведено сравнение со спектрами комбинационного рассеяния кристаллов α - Bi_2O_3 и $Bi_{12}SiO_{20}$. Предложено отнесение наиболее интенсивных линий, наблюдаемых в спектре комбинационного рассеяния $Bi_3B_5O_{12}$. Показана перспективность использования кристаллов $Bi_3B_5O_{12}$ как BKP-преобразователей излучения.

Первые монокристаллы Bi₃B₅O₁₂ были получены в 1983 г. [1] как потенциальные люминофоры с высокой лучевой прочностью. До настоящего времени свойства этих материалов практически не изучены. Известно [2], что край поглощения Bi₃B₅O₁₂ соответствует 290 nm. При температуре ниже 150 К в этих кристаллах наблюдается голубая люминесценция, характерная для многих Ві-содержащих кристаллов [3]. Максимум возбуждения люминесценции находиться в области 265 nm. Бесструктурная полоса излучения имеет максимум при 460 nm, что указывает на большую величину сдвига Стокса $\sim 17000 \, cm^{-1}$ [2]. В ИК-спектре $Bi_3B_5O_{12}$ в области $300-1500 \,\mathrm{cm}^{-1}$ при $T = 300 \,\mathrm{K}$ насчитывается до 28 перекрывающихся уширенных полос [4]. Однако детальное изучение ИК-спектра этого кристалла не проводилось. Отсутствуют также сведения о спектрах комбинационного рассеяния (КР) Ві₃В₅О₁₂.

В настоящей работе поставлена задача получения спектра КР монокристалла Bi₃B₅O₁₂ и проведения теоретико-группового анализа колебательных возбуждений этого кристалла.

Монокристаллы ВізВ5О12 выращены методом Чохральского. Изучение спектров КР осуществляли с помощью спектрографа Т64000 (комбинационного микроскопа), на выходе которого находится многоэлементный приемник, охлаждаемый жидким азотом. Спектры КР регистрировали в диапазоне 20-1000 сm⁻¹. Спектральное разрешение при регистрации спектров соответствовало $1 \, \text{cm}^{-1}$. Возбуждение спектра КР осуществлялось аргоновым лазером ($\lambda = 488.0 \, \text{nm}$, мощность 100 mW). Использовалась геометрия обратного рассеяния при апертуре 1:2. При этом время регистрации одного спектра составляло ~ 1 min. С учетом того, что длина волны возбуждающего излучения лежит в области прозрачности исследованных кристаллов, существенный разогрев образцов не происходил. Исследования проводили на образцах, расколотых по плоскости спайности, соответствующей кристаллографической плоскости (001).

На рис. 1 представлен спектр КР $Bi_3B_5O_{12}$ в области 20–1000 сm⁻¹. Спектр содержит большое число перекрывающихся полос. Исключением являются две узкие (полушириной ~ 1.5–2.0 сm⁻¹) линии при 66 и 147 сm⁻¹, интенсивность которых на порядок превышает интенсивности большинства линий в спектре. Третья по интенсивности линия в спектре наблюдается при

 683 cm^{-1} в диапазоне, соответствующем слабом линиям. Всего в спектре КР $Bi_3B_5O_{12}$ при комнатной температуре удается выделить 38 полос (табл. 1). Однако асимметричная форма полос свидетельствует о присутствии в колебательном спектре существенно большего числа мод. Необходимо отметить, что положения линий в КР- (рис. 1) и ИК-спектрах [4] $Bi_3B_4O_{12}$ не совпадают.

Орторомбическая ячейка кристалла $Bi_3B_5O_{12}$ содержит четыре формульные единицы и относится к пространственной группе симметрии D_{2h}^{16} –Рпта [5]. В структуре этого соединения можно выделить две группы атомов: $[OBi_3]^{7+}$ и $[B_5O_{11}]^{7-}$. Симметрия треугольника $[OBi_3]^{7+}$ (D_{3h}) в решетке $Bi_3B_5O_{12}$ понижается до C_s . Сложный анион $[B_5O_{11}]^{7-}$ состоит из двух несимметричных колец, лежащих в перпендикулярных плоскостях и образованных двумя $[B(1)O_4]$ - и $[B(2)O_4]$ -тетраэдрами (позиционная симметрия C_s) и тремя $[BO_3]$ -группами. Позиционная симметрия атома B(3) в одном из треугольников C_s , в двух других треугольниках атомы B(4) занимают общие положения.

Таблица 1. Частота (cm^{-1}) и интенсивность $(1/s^{\ast})$ полос в спектрах КР кристаллов $Bi_3B_5O_{12}$

N⁰	Частота	Интенсивность	N₂	Частота	Интенсивность
1	50.0	10	20	393.6	18
2	66.5	140	21	412.7	5
3	79.5	32	22	439.0	17
4	86.4	11	23	452.1	6
5	91.6	4	24	469.3	4
6	100.7	5	25	495.5	10
7	110.6	3	26	553.1	4
8	118.9	8	27	584.3	10
9	138.3	19	28	615.7	4
10	146.4	216	29	628.8	9
11	159.9	11	30	637.9	4
12	166.9	13	31	683.3	35
13	193.3	14	32	699.4	14
14	198.5	28	33	733.7	5
15	213.2	21	34	766.0	8
16	237.4	8	35	822.6	8
17	289.3	25	36	837.8	6
18	339.1	9	37	849.9	5
19	355.2	13	38	892.3	7

* — число фотонов в секунду.

Рис. 1. Спектр КР монокристалла Ві₃В₅О₁₂.

С помощью теоретико-группового анализа симметрии нормальных колебаний с волновым вектором k = 0может быть установлена корреляция между колебаниями изолированных групп, образующих структуру Bi₃B₅O₁₂, и колебаниями кристалла (табл. 2). Для треугольников [B(4)O₃], соответствующих общим положениям в решетке Bi₃B₅O₁₂, каждое из колебаний изолированного [BO₃] комплекса будет порождать все восемь колебаний группы D_{2h} . Пользуясь неприводимыми представлениями групп D_{3h} и T_d можно установить распределение колебаний на внутренние и внешние для комплексов $[OBi_3]^{7+}$, $[B(3)O_3]^{3-}$ и $[B(1)O_4]^{5-}$, $[B(2)O_4]^{5-}$ соответственно (табл. 3).

Нетрудно убедиться, что распределение по неприводимым представлениям 237 оптических колебаний кристаллической решетки Bi₃B₅O₁₂ имеет вид

$$\Gamma_{\text{vibr}}^{\text{opt}} = (34A_g + 26B_{1g} + 26B_{2g} + 34B_{3g}) + (26A_u + 33B_{1u} + 33B_{2u} + 25B_{3u}).$$

Из них 128 — внутренние нормальные колебания, 56 — либрационные и 53 — трансляционные (табл. 4).

Учет симметрии изолированного комплекса	Учет группы позиционной симметрии	Учет точечной симметрии кристалла
	$[OBi_3]^{7+}, [B(3)O_3]^{3-}$	
$D_{3h}\ A_1',A_2'',E',E''\ A_2',E',E''$	C_s A' A''	$D_{2h}\ A_g, B_{3g}, B_{1u}, B_{2u}\ B_{1g}, B_{2g}, A_u, B_{3u}$
	$[\mathrm{B}(1)\mathrm{O}_4]^{5-}, [\mathrm{B}(2)\mathrm{O}_4]^{5-}$	
$T_d \ A_1, E, F_1, 2F_2 \ A_2, E, 2F_1, F_2$	C_s A' A"	$D_{2h}\ A_g, B_{3g}, B_{1u}, B_{2u}\ B_{1g}, B_{2g}, A_u, B_{3u}$

Таблица 2. Корреляция между колебаниями изолированных комплексов и колебаниями кристалла

Рис. 2. Спектр КР монокристалла Bi₁₂SiO₂₀, грани образца соответствовали кристаллографическим плоскостям {100}.

Учитывая центросимметричность кристалла, в спектре КР следует ожидать появления колебаний симметрии A_g , B_{1g} , B_{2g} и B_{3g} , всего 120 колебаний. В ИК-спектре активными будут колебания A_u , B_{1u} , B_{2u} и B_{3u} . Этим объясняются различия в положении и интенсивности линий, наблюдаемых в спектре КР (рис. 1) и ИК-спектре [4].

Таблица 3. Распределение колебаний комплексов $[OBi_3]^{7+}$, $[BO_3]^{3-}$ (D_{3h}) и $[BO_4]^{5-}$ (T_d) на внутренние и внешние

Группа	Колебания					
симметрии	внутренние	либрационные	трансляционные			
$D_{3h} \ T_d$	$\begin{array}{c} A_1' + 2E' + A_2'' \\ A_1 + E + 2F_2 \end{array}$	$\begin{array}{c} A_2' + E'' \\ F_1 \end{array}$	$\begin{array}{c}E'+A_2''\\F_2\end{array}$			

Таблица 4. Распределение по неприводимым представлениям оптических колебаний Bi₃B₅O₁₂

Колебания	A_{g}	B_{1g}	B_{2g}	B_{3g}	A_u	B_{1u}	B_{2u}	B_{3u}
Внутренние	20	12	12	20	12	20	20	12
Либрационные	6	8	8	6	8	6	6	8
Трансляционные	8	6	6	8	6	7	7	5

Низкая симметрия кристаллической решетки $Bi_3B_5O_{12}$, определившая число оптических колебаний, обусловила и вид спектра KP, состоящий из малоинтенсивных уширенных полос. При комнатной температуре разрешить все 120 колебаний, активных в спектре KP, не представляется возможным.

Сравнение спектра КР ВізВ5О12 со спектрами моноклинного кристалла α -Bi₂O₃ $(C_{2h}^5 - P2_1/c)$ [6–8] и кубического кристалла Bi₁₂SiO₂₀ (Т³-123) (рис. 2) показывает некоторое сходство этих спектров в области $\nu < 150\,{
m cm^{-1}}$. Среди многочисленных интенсивных линий в спектрах α -Bi₂O₃ и Bi₁₂SiO₂₀ наблюдаются узкие линии, по своему положению с точностью до нескольких cm^{-1} совпадающие с линиями при 66 и 147 cm^{-1} , проявляющимися в спектре КР Ві₃В₅О₁₂. Как было показано в [6,7], колебания в диапазоне $0-150 \,\mathrm{cm}^{-1}$ в спектре КР *α*-Bi₂O₃ относятся к внешним колебаниям атома Ві. В области $\nu > 150 \,\mathrm{cm}^{-1}$ лежат либрационные и трансляционные колебания кислорода. Внутренние моды α -Bi₂O₃ следует искать в области 200-600 cm⁻¹ [8]. Таким образом, линии при 66 и $147 \,\mathrm{cm}^{-1}$ в спектре КР Ві₃В₅О₁₂ следует отнести к либрационным или трансляционным колебаниям атома Ві, что соответствует интерпретации аналогичных линий в спектре КР α -Bi₂O₃ [7].

Атомы	Расстояния, Å	Частота, ст $^{-1}$	1 Атомы Расстояния, Å		Частота, ст $^{-1}$
$\begin{array}{c} \text{Bi}(1)-\text{O}(5)\\ \text{O}(9)_i\\ \text{O}(9)_{rr} \end{array}$	2.12 2.23 2.23	452 343 343	$\begin{array}{c} \text{Bi}(2) - \text{O}(3)_{iii} \\ \text{O}(5)_{iii} \\ \text{O}(7)_{i} \end{array}$	2.11 2.22 2.27	464 352 310

Таблица 5. Результаты расчета * частот колебаний по длинам Bi-O связей

*Расчет по методу [8].

Метод интерпретации спектров КР сложных висмуткислородных соединений, основанный на полученной эмпирически зависимости между длиной Ві-О связи, силой связи и частотой колебания, предложен в [8]. Наиболее корректные результаты этот метод дает для длин Bi-O связей < 2.6 Å, что соответствует области $200-600 \,\mathrm{cm}^{-1}$, т.е. в области частот внутренних колебаний. Этот метод расчета дает значения характеристических частот, совпадающие в ряде случаев с экспериментально измеренными. Однако детальное обоснование данного метода отсутствует. Воспользовавшись структурными данными [5] и эмпирически полученной зависимостью [8], мы оценили положение линий в спектре КР Ві₃В₅О₁₂, соответствующих колебаниям коротких (до 2.6 Å) Ві-О связей (табл. 5). Сравнение расчетных данных (табл. 5) с полученными экспериментально (табл. 1) показывает, что между ними наблюдается хорошая корреляция.

Значительный вклад в спектр КР Ві₃В₅О₁₂ вносят колебания низкосимметричного полиборатного аниона $[B_5O_{11}]^{7-}$, состоящего из двух тетраэдрических $[BO_4]$ и трех тригональных [ВО₃] групп. Известно [4], что тетраэдру [ВО₄] соответствует четыре нормальных колебания с частотами $\nu_1 \sim 800-955, \nu_2 \sim 400-600, \nu_3 \sim 1000$ и $u_4 \sim 600\,\mathrm{cm}^{-1}$. Частоты нормальных колебаний групп $[{
m BO}_3]$ лежат в диапазонах $u_1 \sim 950, \
u_2 \sim 650{-}800,$ $u_3 \sim 1100 - 1300$ и $u_4 \sim 500 - 600 \, {
m cm}^{-1}$ [4]. Как было показано (табл. 2), низкая позиционная симметрия групп [BO₄] и [BO₃] в кристаллической решетке Ві₃В₅О₁₂ приводит к расщеплению этих колебаний. Поэтому в спектре КР (рис. 1) колебания этих групп в области 450-1000 cm⁻¹ проявляются в виде ряда малоинтенсивных широких полос, являющихся суперпозицией различных колебаний В-О подрешетки, неразрешимых при комнатной температуре. Наиболее интенсивные полосы в этой области спектра при 680 и $700 \,\mathrm{cm}^{-1}$ следует отнести к симметричному деформационному колебанию группы [BO₃], не активному в спектрах КР в рамках симметрии D_{3h} , но разрешенному в случае $Bi_3B_5O_{12}$ (табл. 2). Положение, интенсивность и форма этого дублета характерна для ИК-спектров Ві-содержащих кристаллов, в которых атом В находится исключительно в тригональном окружении: Bi₂₄B₂O₃₉, Bi₄B₂O₉ [4,9].

Интересной особенностью спектров КР кристалла $Bi_3B_5O_{12}$ является присутствие в спектре двух линий при 66 и 147 ст⁻¹, интенсивность которых на порядок превосходит интенсивности остальных полос. Интенсивности

ность линии с частотой 147 сm⁻¹ примерно в 2 раза меньше интенсивности соответствующей линии в спектре КР кристалла $Bi_{12}SiO_{20}$ (рис. 1, 2), что позволяет оценить порядок величины эффективности КР этой линии: $k \sim 10^{-7}$ cm⁻¹ster.¹ [10]. С учетом высокой прозрачности кристалла в широкой области спектра (край фундаментального поглощения ~ 290 nm), а также того, что кристалл относится к семейству боратов, обладающих высокой лучевой прочностью (> 1 GW/cm²), этот материал можно считать весьма перспективным для использования в качестве преобразователя частоты лазерного излучения на основе явления вынужденного КР.

Таким образом, в работе впервые получен спектр КР монокристалла $Bi_3B_5O_{12}$. На основе теоретико-группового анализа дано объяснение расщепления колебаний в кристаллическом поле. Сравнение спектров КР $Bi_3B_5O_{12}$ со спектрами изученных ранее α - Bi_2O_3 и $Bi_{12}SiO_{20}$ позволило дать отнесение наиболее интенсивных линий в спектре КР $Bi_3B_5O_{12}$. Обнаружение в спектре КР $Bi_3B_5O_{12}$ двух узких (полушириной $\sim 1.5-2.0\,{\rm cm^{-1}}$) интенсивных линий (коэффициент КР $\sim 10^7\,{\rm cm^{-1} ster^{-1}}$) открывает возможности для реализации новых ВКР-преобразователей на основе $Bi_3B_5O_{12}$.

Список литературы

- [1] J. Liebertz. Prog. Crystal Growth & Charact. 6, 361 (1983).
- [2] G. Blasse, E.W. Oomen, J.L., J. Liebertz. Phys. Stat. Sol. 137B, k77 (1986).
- [3] C.W.M. Timmermans, G. Blasse. J. Solid State Chem. 52, 222 (1984).
- [4] C.E. Weir, R.A. Schroeder. J. Research NBS 68A, 5, 465 (1964).
- [5] A. Vegas, F.H. Cano, S. Garcia–Blanco. J. Solid State Chem. 17, 151 (1976).
- [6] V.N. Denisov, A.N. Ivlev, A.S. Lipin, B.N. Mavrin, V.G. Orlov.
 J. Phys.: Condens. Matter. 9, 4967 (1997).
- [7] S.N. Narang, N.D. Patel, V.B. Kartha. J. Mol. Struct. 327, 221 (1994).
- [8] F.D. Hardcastle, I.E. Wachs. J. Solid. State. Chem. 97, 319 (1992).
- [9] Ю.Ф. Каргин, А.В. Егорышева. Неорган. материалы. 34, 7, 859 (1998).
- [10] Б.Х. Байрамов, Б.П. Захарченя, Р.В. Писарев, З.М. Хашхожев. ФТТ **13**, *11*, 3366 (1971).