Распределение намагниченности насыщения M_S возле межзеренной границы в пластине трехосного ферромагнетика типа кремнистого железа

© Л.М. Шейко, А.В. Садовой

Запорожский государственный университет, 690063 Запорожье, Украина E-mail: sheiko@zsu.zaporizhzhe.ua

(Поступила в Редакцию 10 октября 2000 г. В окончательной редакции 8 февраля 2001 г.)

В рамках теории микромагнетизма изучены особенности одномерного распределения намагниченности $\mathbf{M}_{S}(x)$ возле межзеренных границ (GB) в пластинах магнитомягких сплавов типа Fe-3%Si с плоскостью поверхности (011). Обсуждены механизмы возникновения пространственных возмущений намагниченности насыщения около плоских GB. Как показывают расчеты, появление макроскопических областей неоднородной намагниченности протяженностью $\Delta x \approx 10 \,\mathrm{mm}$ вблизи GB является следствием μ^* -эффекта. Это подтверждается и результатами экспериментальных исследований.

Межзеренные границы (GB) относятся к числу наиболее распространенных дефектов кристаллического строения [1-3]. Они играют важную роль в формировании доменной структуры и магнитных свойств поликристаллических ферромагнетиков [2,4-7]. Влияние GB на магнитные свойства особенно велико в мелко- и нанокристаллических материалах [2,7-10], где относительный объем межзеренных промежутков может достигать 10-20% от объема основной фазы. Одной из причин такого воздействия являются магнитостатические поля $\mathbf{H}^{m}(\mathbf{r})$ (которые внутри тела принято называть размагничивающими полями \mathbf{H}^d , а вне его — полями рассеяния \mathbf{H}^s), порождаемые границами зерен [4,5,11–13]. Под действием $\mathbf{H}^{m}(\mathbf{r})$ результирующее поле $\mathbf{H}^{i}(\mathbf{r}) = \mathbf{H}^{e} + \mathbf{H}^{m}(\mathbf{r})$ (где \mathbf{H}^{e} – напряженность внешнего однородного поля), магнитная индукция В и удельные электромагнитные потери энергии P_{sp} внутри зерен становятся неоднородными [14–16]. В [11,12,15] экспериментально исследованы некоторые закономерности распределения результирующей намагниченности M и магнитных полей рассеяния H^s около GB в пластинах сплава Fe-3%Si, поверхности которых близки к кристаллографической плоскости (011). Настоящая работа посвящена теоретическому исследованию особенностей и причин возникновения неоднородностей в распределении намагниченности насыщения M_S возле плоской GB, разделяющей зерна с различной ориентацией осей (100) в пластине мягкого магнитного материала типа кремнистого железа.

Моделирование задачи и основные соотношения

Рассмотрим (рис. 1) неограниченную по осям x_1 и x_3 пластину трехосного ферромагнетика типа кремнистого железа (с константой кристаллографической магнитной анизотропии $K_1 > 0$) толщиной 2*h* вдоль оси x_2 прямоугольной системы координат { x_1, x_2, x_3 }. Внутри пластины имеется плоская GB, разделяющая зерна "1" и "2", кристаллографические плоскости (011) которых параллельны поверхности пластины (координатной плоскости x1x3), а оси легкого намагничивания (ED) $\langle 100 \rangle$ образуют с осью x_1 углы α_1^0 и α_2^0 соответственно. Поверхность GB совпадает с плоскостью уг прямоугольной системы координат $\{x, y, z\}$, оси x и z которой повернуты в плоскости пластины на угол γ относительно осей x1 и x3 соответственно; оси x2 и у при этом совпадают, а нормаль n к GB направлена вдоль оси х (рис. 1). При наложении внешнего однородного поля H^e , ориентированного вдоль оси x_1 , каждый из кристаллитов "1" и "2" намагничивается до насыщения $(M = M_{\rm S})$. В силу бесконечности рассматриваемого образца и его GB по оси z положим, что $\mathbf{M} \neq \mathbf{M}(z)$. Кроме того, будем считать, что намагниченность лежит в плоскости пластины (т.е. $M_v = 0$) и остается однородной по ее толщине, $\mathbf{M} \neq \mathbf{M}(y)$. Таким образом, исследуется одномерное распределение намагниченности.

$$\mathbf{M}(x) = M_S[\cos\theta(x)\mathbf{e}_x + \sin\theta(x)\mathbf{e}_z], \qquad (1)$$

где θ — угол отклонения вектора **M** от нормали **n**; **e**_x и **e**_z — орты соответствующих осей; условие $M^2(x) = M_S^2 = \text{const}$ учитывается автоматически.

Равновесное распределение $\mathbf{M}(x)$, а тем самым и распределение углов $\theta(x)$ может быть найдено как уста-

Рис. 1. Геометрия задачи.

новившееся (при $t \to \infty$) решение уравения Ландау– Лифшица [17,18]

$$\frac{\partial \mathbf{M}}{\partial t} = -g \cdot \mu_0 \mathbf{M} \times \mathbf{H}^{\text{eff}} + \frac{\alpha_D}{M_S} \mathbf{M} \times \frac{\partial \mathbf{M}}{\partial t}.$$
 (2)

Здесь g — гиромагнитное отношение, α_D — коэффициент затухания. Напряженность \mathbf{H}^{eff} эффективного магнитного поля можно представить в виде суммы

$$\mathbf{H}^{\text{eff}} = \mathbf{H}_{\text{exc}}^{\text{eff}} + \mathbf{H}_{k}^{\text{eff}} + \mathbf{H}_{h}^{\text{eff}} + \mathbf{H}_{m}^{\text{eff}}$$
$$= -\frac{1}{\mu_{0}} \left(\frac{\delta f_{\text{exc}}}{\delta \mathbf{M}} + \frac{\delta f_{k}}{\delta \mathbf{M}} + \frac{\delta f_{h}}{\delta \mathbf{M}} + \frac{\delta f_{m}}{\delta \mathbf{M}} \right), \quad (3)$$

где напряженности \mathbf{H}_{exc}^{eff} (эффективного поля обменного взаимодействия), \mathbf{H}_{k}^{eff} (эффективного поля кристаллографической анизотропии), \mathbf{H}_{h}^{eff} (внешнего магнитного поля) и \mathbf{H}_{m}^{eff} (эффективного магнитостатического поля) равны вариационным производным от объемных плотностей f_{exc} , f_k , f_h и f_m соответствующих энергий по намагниченности **M**. Выражение для объемной плотности полной свободной энергии f (которая представляет собой сумму плотностей энергий обменного взаимодействия (f_{exc}), магнитной кристаллографической анизотропии (f_k), энергии намагниченности во внешнем поле (f_h), магнитостатической энергии (f_m)) записывается в виде

$$f = A \left(\frac{d\theta}{dx}\right)^2 + \frac{1}{4} K_1 \left[\sin^2 2(\theta - \alpha_{1,2}^0 - \gamma) + \sin^4(\theta - \alpha_{1,2}^0 - \gamma)\right] - \mu_0 M_S \cos\theta \cdot H^e - \frac{1}{2} \mu_0 M_S \cos\theta \cdot H_x^m, \quad (4)$$

где A — постоянная обменного взаимодействия; напряженность магнитостатического поля \mathbf{H}^m вычисляется с помощью известной формулы [17,18]

$$\mathbf{H}^{m} = \frac{1}{4\pi} M_{S} \nabla \iint \frac{d \cos \theta}{dx'} \ln |(x - x')^{2} + (y - y')^{2}| dx' dy'.$$
(5)

Основная трудность при решении подобного рода задач в теории микромагнетизма [17–19] заключается в определении энергии f_m и напряженности соответствующего ей эффективного магнитостатического поля $\mathbf{H}_m^{\text{eff}}$ (см. (3)). Согласно (1), $M_y = 0$, поэтому $f_m \neq f_m(M_y)$, что дает

$$H_{my}^{\text{eff}}(x,z) = -\frac{1}{\mu_0} \frac{\delta f_m}{\delta M_y} = 0.$$
 (6)

Применив обычные в таких случаях преобразования [8,17–19], для двух других компонент поля H_m^{eff} получаем

$$H_{mx}^{\text{eff}}(x,z) = \frac{1}{2\pi} M_S \int_{-\infty}^{+\infty} \frac{\partial \cos \theta}{\partial x'} \left\{ -2 \operatorname{arctg} \frac{2h}{(x-x')} + \frac{(x-x')}{2h} \ln \left| 1 + \frac{4h^2}{(x-x')} \right| \right\} dx', \quad (7)$$

$$H_{mz}^{\text{eff}}(x,z) = -\operatorname{tg} \theta \cdot H_{mx}^{\text{eff}}(x,z). \tag{8}$$

Здесь x' и x — координаты точек источника и наблюдения магнитостатического поля. Выражения для эффективных полей $\mathbf{H}_{\text{exc}}^{\text{eff}}$, $\mathbf{H}_{h}^{\text{eff}}$ вполне очевидны (см. (3) и (4)). Окончательно с учетом изложенного выше уравнение (2) преобразуем к виду

$$\begin{aligned} \frac{\partial\theta}{\partial\tau} &= -\frac{2\alpha_D}{1+\alpha_D^2} \Biggl\{ -\frac{2A}{\mu_0 M_S^2} \frac{d^2\theta}{dx^2} + \frac{K_1}{2\mu_0 M_S^2} \\ &\times \Biggl[\sin 4(\theta - \alpha_{1,2}^0 - \gamma) + \sin^2(\theta - \alpha_{1,2}^0 - \gamma) \\ &\times \sin 2(\theta - \alpha_{1,2}^2 - \gamma) \Biggr] + \frac{1}{M_S} H^e \sin(\theta - \gamma) \\ &+ \frac{1}{2} \sin \theta(x) \int_{-\infty}^{+\infty} \frac{d\cos \theta(x')}{dx'} \Biggl[-2 \cdot \arctan \frac{2h}{x-x'} \\ &+ \frac{x-x'}{2h} \ln \Biggl| 1 + \frac{4h^2}{(x-x')^2} \Biggr| \Biggr] dx' \Biggr\}, \end{aligned}$$
(9)

где $\tau = g\mu_0 M_S t$ — безразмерное время. Выражение в фигурных скобках правой части уравнения (9) представляет собой полный вращающий момент $L = 1/\mu_0 M_s^2 \cdot \delta f / \delta \theta$ (в относительных единицах) эффективного поля H^{eff}; его слагаемые (в приведенном порядке) являются вращающими моментами обменного взаимодействия Lexc, магнитной кристаллографической анизотропии L_k, внешнего L_h и магнитостатического L_m полей. Интегральнодифференциальное уравнение (9) движения намагниченности $\mathbf{M}(x)$ к состоянию равновесия может быть решено только численно. В качестве расчетной была выбрана область D конечных размеров: $-a \leqslant x \leqslant a$ (где $a \gg h$), которая разбивалась пространственной сеткой x_i на *N* ячеек. Размеры $\Delta x_i = x_i - x_{i-1}$ ячеек по оси *x* достаточно малы, чтобы значения углов θ_i (направления векторов **M**_S) в них можно было считать постоянными. Вне границ области D (при |x| > a) намагниченность принималась постоянной. Разумеется, последнее условие приводит к погрешности вычисления $\theta(x)$ (так как область существования \mathbf{H}^m бесконечна), которую, однако, можно сделать сколь угодно малой, подбирая достаточно большие значения а. В сеточном приближении уравнение (9) приводится (методом конечных разностей) к виду

$$\begin{aligned} \frac{\partial \theta_i}{\partial \tau} &= -\frac{2\alpha_D}{1+\alpha_D^2} \Biggl\{ -\frac{2A}{\mu_0 M_S^2} \frac{\theta_{i+1}^n - 2\theta_i^n + \theta_{i-1}^n}{\Delta x_i^2} \\ &+ \frac{K_1}{2\mu_0 M_S^2} \Biggl[\sin 4(\theta_i^n - \alpha_i^0 - \gamma) \\ &+ \sin^2(\theta_i^n - \alpha_i^0 - \gamma) \sin 2(\theta_i^n - \alpha_i^0 - \gamma) \Biggr] \\ &+ \frac{1}{M_S} H^e \sin(\theta_i^n - \gamma) \\ &+ \frac{1}{2\pi} \sin \theta_i^n \sum_j \frac{\cos \theta_i^n - \cos \theta_j^n}{\Delta x_j} G_{ij} \Biggr\}, \end{aligned}$$
(10)

где функция G_{ij} определяется как

$$G_{ij} = 2(x_i - x_j) \operatorname{arctg} \frac{2h}{x_i - x_j} - \frac{(x_i - x_j)^2}{4h}$$

$$\times \ln \left| 1 + \frac{4h^2}{(x_i - x_j)^2} \right| + h \cdot \ln \left| \frac{4h^2 + (x_i - x_j)^2}{4h^2 + (x_i - x_{j-1})^2} \right|$$

$$- 2(x_i - x_{j-1}) \operatorname{arctg} \frac{2h}{x_i - x_{j-1}}$$

$$+ \frac{(x_i - x_{j-1})^2}{4h} \ln \left| 1 + \frac{4h^2}{(x_i - x_{j-1})^2} \right|.$$
(11)

Для численного решения уравнения (10) использовали метод итераций [8,19]. В момент времени $\tau = 0$ задавалось исходное распределение углов θ_i^0 , соответствующее ориентации векторов **M**_S вдоль осей (100) в соседних кристаллитах "1" и "2". Каждое последующее их распределение $\theta_i^{(n)}$ (на *n*-й итерации) вычислялось через предыдущие значения углов $\theta_i^{(n-1)}$ по формуле

$$\theta_i^n = \theta_i^{(n-1)} + \frac{\partial \theta_i^{(n-1)}}{\partial \tau} (\tau_n - \tau_{n-1}).$$
(12)

Вычисления заканчиваются в момент времени τ_n , когда величина $\varepsilon = \max L_i / (|L_i^{\text{exc}}| + |L_i^k| + |L_i^h| + |L_i^m|)$ становится меньше 10^{-3} .

2. Результаты расчета и их обсуждение

На рис. 2–6 представлены результаты расчетов для образца сплава Fe-3%Si ($A = 1.76 \cdot 10^{-6}$ J/m, $K_1 = 3.4 \cdot 10^4$ J/m³, $M_S = 1.59 \cdot 10^6$ A/m) толщиной 2h = 0.25 mm с углами $\alpha_1^0 = 2^\circ$, $\alpha_2^0 = 10^\circ$ и $\gamma = 20^\circ$ (для такой пластины размеры расчетной области составили 2a = 12 mm). Для большей наглядности и простоты изложения на рис. 2 вместо $\theta(x)$ приведены зависимости углов $\alpha(x) = \theta(x) - \gamma$ между направлениями **М** и **H**^e (осью x_1). Большая часть обсуждаемых

Рис. 2. Изменение ориентации $\alpha(x)$ намагниченности насыщения \mathbf{M}_S возле GB (x = 0 — поверхность границы) в пластине кремнистого железа с $\alpha_1^0 = 2^0$, α_2^0 и $\gamma = 20^\circ$ при различных значениях внешнего однородного поля. H^e kA/m: 1-6, 2 - 50, 3 - 100, 4 - 500.

Рис. 3. Вариации проекций векторов M_S на оси $\langle 100 \rangle$ в исследуемом материале при наложении внешнего поля напряженностью $H^e = 6$ kA/m.

Рис. 4. Изменение нормальной составляющей намагниченности $M_n(x)$ вблизи поверхности GB при $H^e = 6$ kA/m: 1 — рассчитано с учетом обменной энергии f_{exc} , 2 — без учета f_{exc} .

Рис. 5. Кривые вращающих моментов $(a - для интервала -6 < x < 6 mm, b - в интервале -25 < x < 25 <math>\mu$ m): I -обменного взаимодействия $L_{exc}(x)$, 2 -магнитной кристаллографической анизотропии $L_k(x)$, 3 и 4 - моментов внешнего $L_h(x)$ и магнитостатического $L_m(x)$ полей.

Рис. 6. Пространственное распределение компоненты $H_x^m(x, y)$ магнитостатического поля H^m возле GB в исследуемой пластине при $H^e = 6 \text{ kA/m}$.

результатов относится к случаю, когда напряженность внешнего поля составляет $H^e = 6$ kA/m. Под действием таких полей \mathbf{H}^e векторы \mathbf{M}_S внутри зерен вдали от GB ориентируются вдоль фиксированных направлений, близких к осям (100). Поэтому (кривая *1* на рис. 2) при

 $x \leq -5$ и $x \geq 5$ mm значения углов $\alpha(x)$ приближаются к α_1^0 и α_2^0 соответственно, а величины проекций $M_{(100)}$ векторов \mathbf{M}_{S} на оси (100) (рис. 3) на расстояниях Δx от GB более 5 mm близки к намагниченности насыщения $(M_{\langle 100 \rangle} \approx M_S = 1.59 \cdot 10^6 \, {
m A/m})$. По мере приближения к GB отклонения векторов M_S от осей (100) постепенно увеличиваются (что сопровождается уменьшением проекции $M_{(100)}$ при $x \rightarrow 0$ на рис. 3). В результате этого разрывы нормальной составляющей намагниченности M_n (рис. 4) на поверхности GB (x = 0 положение GB) исчезают ($\Delta M_n = 0$). Заметим, что такое поведение результирующей намагниченности М вблизи GB в пластинах кремнистого железа ранее наблюдали экспериментально [11,12,15]. Как следует из рис. 2 (кривая 1), 3 и 4, наиболее резкий поворот векторов M_S относительно направлений (100) имеет место в непосредственной близости к GB (в области I, где $|x| \leq 10 \,\mu\text{m}$). На больших расстояниях от GB (при $10\,\mu\text{m} < |x| \leq 5\,\text{mm}$, область II) неоднородность намагниченности $\mathbf{M}(x)$ существенно уменьшается, и в области III, где $|x| > 5 \,\mathrm{mm}$, при указанных значениях внешнего поля ($H^e = 6 \text{ kA/m}$) становится малозаметной (рис. 2,3). Причины возникновения такого распределения M(x) можно выяснить из анализа рис. 5, где представлены кривые вращающих моментов L_{exc} , L_k , L_h , L_m (в состоянии равновесия их суммарный момент L равен нулю). Главным образом за счет момента сил короткодействующего обменного взаимодействия Lexc (кривая 1 на рис. 5, a) и происходит поворот векторов M_S в области I, сопровождающийся исчезновением скачка намагниченности ΔM_n на поверхности GB (рис. 4). При $|x| > 10\,\mu\mathrm{m}$ вкладом от L_{exc} в суммарный вращающий момент L уже можно пренебречь по сравнению с моментом L_m магнитостатического взаимодействия (кривая 4 на рис. 5), который в сумме с L_h (кривая 3 на рис. 5) уравновешивает вращающий момент кристаллографической анизотропии L_k (кривая 2 на рис. 5), удерживающий векторы M_S вдоль ED (100). Поэтому в пределах макроскопической области II (протяженностью Δx порядка 10 mm по обе стороны от GB), которая составляет бо́льшую часть зоны неоднородности M около GB, неоднородное вращение магнитных моментов атомов относительно осей (100) вызвано действием магнитостатического поля Н^т (рис. 6), т.е. представляет собой μ^* -эффект [5,15]. На значительных расстояниях от GB (в области III, где $L_m < L_h$, причем $L_m(x)$ слабо зависит от x) почти однородное распределение $\alpha(x)$ (кривая 1 на рис. 2) обусловлено преимущественно моментом L_h внешнего однородного поля \mathbf{H}^{e} (кривая 3 на рис. 5). По мере роста напряженности поля \mathbf{H}^{e} возмущения $\delta \mathbf{M}$ намагниченности М около GB постепенно уменьшаются и в полях $H^e > 500 \,\mathrm{kA/m}$ подавляются практически полностью (рис. 2), что соответствует ориентации атомных магнитных моментов вдоль направления **H**^{*e*}.

В заключение отметим, что исследуемое здесь равновесное распределение намагниченности $\mathbf{M}(x)$ возле плоской GB в поликристаллическом ферромагнетике типа кремнистого железа имеет некоторую общность со структурой доменных стенок [18]: и в том и в другом случаях наблюдается плавный поворот векторов \mathbf{M}_S от одного фиксированного направления к другому. Вместе с тем зона неоднородности намагниченности \mathbf{M} около границ зерен в отличие от типичной ширины доменных стенок ($\delta \approx 10^{-5}-10^{-4}$ mm) в мягких магнитных материалах имеет макроскопические размеры ($\Delta x \approx 10$ mm), что отражает решающую роль дальнодействующего магнитостатического поля \mathbf{H}^m . Полученные здесь данные качественно согласуются с результатами соответствующих экспериментальных исследований [15].

В заключение отметим основные результаты работы.

1) Получено установившееся (при $t \to \infty$) решение уравнения Ландау–Лифшица, описывающее одномерное распределение намагниченности насыщения $\mathbf{M}(x)$ вблизи плоской GB, которая разделяет кристаллиты с плоскостью поверхности (011), отличающиеся ориентацией ED $\langle 100 \rangle$, в пластине трехосного ферромагнитного материала типа кремнистого железа, помещенной во внешнее однородное поле \mathbf{H}^{e} .

2) Плавный поворот намагниченности **M** вблизи GB исключает разрывы ее нормальной составляющей $(\Delta M_n = 0)$ на поверхности самой границы, что вызвано действием вращающего момента обменных сил L_{exc} .

3) В пределах макроскопических областей протяженностью $\Delta x \approx 10$ mm, которые составляют большую часть зоны неоднородности **M** возле GB, возмущения δ **M** обусловлены явлением μ^* -эффекта, т.е. отклонениями магнитных моментов атомов от ED под действием магнитостатического поля **H**^m, связанного с GB.

Список литературы

- [1] Д. Мак Лин. Границы зерен в металлах. Металлургия, М. (1973). 204 с.
- [2] А.И. Мицек, В.Н. Пушкарь. Реальные кристаллы с магнитным порядком. Наукова думка, Киев (1978). 295 с.
- [3] V. Randle. The Measurement of Grain Boundary Geometry. Institute of Physics Publishing, Bristol–Philadelphia. (1993). 168 p.
- [4] J. Goodenough. Phys. Rev. 95, 917 (1954).
- [5] С. Тикадзуми. Физика ферромагнетизма. Мир, М. (1987). 420 с.
- [6] В.А. Зайкова, И.Е. Старцева, Б.Н. Филлипов. Доменная структура и магнитные свойства электротехнической стали. Наука, М. (1992). 270 с.
- [7] R. Fischer, H. Kronmuller. J. Magn. Magn. Mater., 184, 166 (1998).
- [8] V. Rave, K. Ramstoch. J. Magn. Magn. Mater., 171, 69 (1997).
- [9] G. Herzer. J. Magn. Magn. Mater., 157–158, 133 (1996).
- [10] G. Herzer, L.K. Varga. J. Magn. Magn. Mater., 215–216, 506 (2000).
- [11] L. Sheiko, G. Brekharya, S. Gaiduk, A. Sadovoy. J. Magn. Magn. Mater., 196–197, 813 (1999).
- [12] L. Sheiko, G. Brekharya, A. Sadovoy, S. Gaiduk, O. Kulyk, J. Phys. D: Appl. Phys. **32** 2851 (1999).

- [13] L. Sheiko, G. Brekharya, A. Sadovoy, O. Kulyk, I. Pisanko. J. Magn. Magn. Mater., 215–216, 24 (2000).
- [14] M. Enokizono, I. Tanabe, T. Kubota. J. Magn. Magn. Mater, 196–197, 338 (1999).
- [15] L. Sheiko, G. Brekharya, O. Kulyk, A. Sadovoy, J. Magn. Magn. Mater., 215–216, 86 (2000).
- [16] K. Senda, M. Ishida, K. Sato. J. Electrical Engineering in Japan 126, 4, 1 (1999).
- [17] В.Г. Барьяхтар, Ю.И. Горобец. Цилиндрические магнитные домены и их решетки. Наукова думка, Киев (1988). 159 с.
- [18] A. Hubert, R. Schafer. Magnetic domains. Springer, Berlin (1998). 696 p.
- [19] Б.Н. Филипов, Л.Г. Корзунин. ФТТ 38, 8, 2442 (1996).