Топологическое разрушение фазового перехода в состояние спинового стекла в аморфных сплавах с несимметричным распределением обменных взаимодействий

© А.Б. Сурженко, Г.А. Такзей

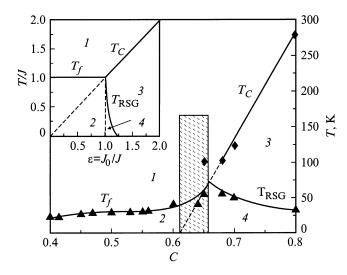
Институт магнетизма Академии наук Украины, 03142 Киев, Украина

(Поступила в Редакцию в окончательном виде 26 декабря 2000 г.)

Показано, что с ростом асимметрии распределения обменных взаимодействий реальная магнитная размерность массивных образцов аморфных спиновых стекол FeNi и FeMn уменьшается, достигая низшего критического значения $D_L = 2.51 \pm 0.12$ вблизи порога протекания бесконечного ферромагнитного кластера. Полученный экспериментально результат хорошо согласуется с расчетами, выполненными с помощью машинных экспериментов.

Работа частично финансировалась в рамках совместного проекта 13 № 6992 с Лейпцигским университетом (Германия).

Известно [1], что снижение размерности D магнитной системы существенно влияет на критическую температуру T_0 и критические показатели $\alpha, \beta, \delta, \gamma$ и др. протекающего в ней фазового перехода вплоть до окончательного его разрушения ($T_0 = 0 \, \text{K}, \ \beta = \delta^{-1} = 0$) после достижения предела $D\leqslant D_L$, где D_L — пороговое значение, называемое низшей критической размерностью магнетика. Отметим, что для изинговского ферромагнетика (ФМ) $D_L=1$, для гейзенберговского ФМ (без учета анизотропии) $D_L = 2$ [2], в то время как для спиновых стекол (СС) 2 $< D_L < 3$ [1]. До сих пор для экспериментальной оценки D_L в СС использовался, как правило, один способ, заключающийся в уменьшении геометрических размеров образца, т.е. его евклидовой размерности D_E [3]. Между тем расчеты фрактальных агрегатов показывают [4], что аналогичного результата можно добиться в 3D магнитных системах путем изменения топологии самого евклидового пространства (например, если речь идет о СС, введением в него ФМ-пор). При этом, согласно [4], фрактальная поправка $\Delta = (D_E - D)$ обычно невелика ($\Delta \leq 0.5 - 0.7$).


В настоящей работе на основании результатов исследования магнитных свойств массивных сплавов с преобладающим ΦM -обменом предпринята попытка экспериментальной оценки низшей критической размерности CC.

Для решения поставленной задачи, которая фактически совпадает с изучением проблемы разрушения топологических фазовых переходов, очень важно выбрать объекты исследования. Как показано далее, весьма удобными оказываются CC на основе аморфных сплавов $(Fe_C Ni_{1-C})_{77} B_{13} Si_{10}$ (C=0.07) и $(Fe_C Mn_{1-C})_{75} P_{16} B_6 Al_3$ (C=0.65) вблизи критических концентраций возникновения дальнего Φ М-порядка. Отметим, что сплавы для исследований были выбраны с таким расчетом, чтобы низшая критическая размерность протекающего в них магнитного превращения была достаточно близкой к целочисленному значению D_E , обеспечивая справедливость неравенства $(D_E - \Delta) = D \leqslant D_L < D_E$. Следует

заметить, что магнитная структура аморфных СС весьма склонна к образованию ФМ-кластеров, экранированных от СС-матрицы немагнитной прослойкой [5,6]. Данная особенность превращает эти кластеры в естественные "поры", которые препятствуют протеканию фазового перехода в состояние СС.

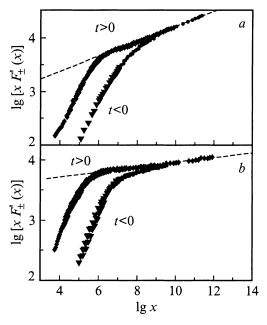
Используя магнитную фазовую диаграмму (см. вставку на рис. 1) изинговских магнетиков с гауссовым распределением $P(J_{ij}) \sim \exp[-(J_{ij} - J_0)^2/(2J^2)]$ обменных взаимодействий [1], нетрудно показать [7], что вдоль линии $T_f = J$ (J — дисперсия энергии обменного взаимодействия, J_0 — средний обмен) фазового перехода в состояние СС средний размер ξ_{FM} этих пор, подчиняясь соотношению $\xi_{FM} \sim (T_f/J_0-1)^{-\nu} \sim [(1-\varepsilon)/\varepsilon]^{-\nu},$ где $\varepsilon = J_0/J$ и $\nu \approx 0.8$, заметно изменяется. В точке $\varepsilon=0$, соответствующей симметричному распределению обменных взаимодействий разных знаков, он пренебрежимо мал. В этом случае СС-фазе доступно все евклидово пространство $D = D_E = 3$. Гораздо более сложная ситуация возникает вблизи перколяционного порога $\varepsilon_P = J_0/J = 1$, где $\xi_{FM}(\varepsilon \to \varepsilon_P) \to \infty$. Отметим, что решение $D_P = 2.48 \pm 0.09$ задачи о фрактальной размерности D_P критического кластера для трехмерного случая ($D_E = 3$) хорошо известно [4]. Поскольку это значение для СС меньше теоретических оценок D_L [7,8], можно ожидать, что переход от симметричных СС-систем ($D \approx D_E = 3$, $\beta \approx 1$, $\delta^{-1} \approx 0.3$ [9]) к несимметричным $(\varepsilon \to \varepsilon_P,\, D \to D_P)$ действительно приведет к разрушению кооперативного фазового превращения в состояние СС ($\beta = \delta^{-1} = 0$).

К сожалению, в реальных сплавах [10] (рис. 1) подобный сценарий разыгрывается в очень узком интервале концентраций, что не позволяет провести необходимые исследования в пределах одного квазибинарного разреза. По этой причине в настоящей работе проведена серия тестовых измерений, в ходе которой подбирались образцы аморфных сплавов с различной степенью асимметрии обменного взаимодействия $0 \leqslant \varepsilon \leqslant 1$. Мерой его дисперсии J служила температура, соответствующая

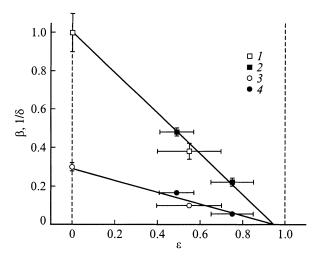
Рис. 1. Магнитная фазовая диаграмма аморфных сплавов квазибинарного разреза (Fe_CMn_{1-C}) $_{75}P_{16}B_6Al_3$ [10] и изинговских магнетиков с гауссовым распределением обменных взаимодействий [1] (на вставке). Интервал концентраций $0.62 \leqslant C \leqslant 0.66$, соответствующий несимметричным СС ($0 \leqslant \varepsilon \leqslant 1$), отмечен штриховкой. I — парамагнитное (ΠM), 2 — спин-стекольное (CC), 3 — ферромагнитное (ΦM) состояние, 4 — состояние возвратного CC. T_C — температура Кюри, T_f — температура фазового перехода ΠM —CC, T_{RSG} — температура возвратного фазового перехода ΦM —CC.

максимуму линейной части динамической магнитной восприимчивости $\chi_0(T)$. Величину среднего обмена J_0 определяли по температуре θ "потенциального" ФМ-упорядочения [5] (штриховая линия на рис. 1) путем обработки температурных зависимостей магнитной восприимчивости $\chi_0(T) \sim (T-\theta)^{-\lambda} \ (T>T_f)$ методом Кувела—Фишера в парамагнитной (ПМ) области, обеспечивающей корректные результаты для произвольных значений λ [5]. В результате проведенного отбора в данной работе отдано предпочтение массивным в виде лент $(1\times1\times15\,\mathrm{mm})$ образцам двух аморфных сплавов ($\mathrm{Fe_{0.65}Mn_{0.35}})_{75}\mathrm{P_{16}B_6Al_3}$ и ($\mathrm{Fe_{0.07}Ni_{0.93}})_{77}\mathrm{B_{13}Si_{10}}$, для которых величина ε составила соответственно $\varepsilon=0.49\pm0.08$ [1,7] и 0.76 ± 0.10 [7,11].

Критические показатели фазового перехода ПМ–СС определялись по результатам изучения нелинейного отклика образца на малое синусоидальное возмущение магнитным полем с частотой $f=75\,\mathrm{Hz}$ и амплитудой $h_0=0.6\,\mathrm{mT}$ в присутствии постоянного магнитного поля $H\geqslant h_0$ [12]. Данный подход позволяет решить проблему выделения сингулярного вклада из магнитной восприимчивости


$$\chi(H,t) = \chi_0(0,t) - t^{\beta} F'(x) \tag{1}$$

наиболее естественным путем — разложением ее на спектральные составляющие. Здесь F'(x) — скейлинговая функция переменной $x = H^2/t^{\beta\delta}$, а $t = |T-T_f|/T_f$ — приведенная температура. В рассматриваемом случае амплитуда сигнала, детектируемого на второй, третьей


и т.д. гармониках частоты перемагничивающего магнитного поля, несет информацию о первой χ_1 [12], второй χ_2 и т.д. производных магнитной восприимчивости. Например,

$$\chi_1(H,t) \equiv \frac{d\chi(H,t)}{dH} = -2Ht^{\beta(1-\delta)}\frac{dF'(x)}{dx}.$$
 (2)

Таким образом, задача определения β, δ и T_f сводится к стандартному методу их перебора до получения оптимального коллапса экспериментально полученной поверхности $\chi_1(H,t)$ в скейлинговую функцию F'(x). Поскольку подробное описание такой процедуры можно найти в [1], перейдем к обсуждению полученных результатов. Для наглядности они изображены на рис. 2, а, в в виде функций xF'(x). При этом две ветви функции xF'(x) соответствуют температурам $T > T_f$ и $T < T_f$. Это позволяет не только продемонстрировать качество аппроксимации нескольких сотен точек с помощью формулы (2), но и показать деструктивное влияние ФМ-обмена на критическое поведение амофных СС. Действительно, как следует из приведенных результатов, усиление ФМ-обмена проявляется в уменьшении угла наклона штриховых прямых (рис. 2), который в силу степенной зависимости $F'(x \to \infty) \sim x^{1/\delta}$ соответствует обратной величине показателя критической изотермы. Указанное обстоятельство свидетельствует о тенденции к разрушению фазового перехода ПМ-СС при $arepsilon o arepsilon_P$ за счет увеличения концентрации и размеров ФМ-"пор".

Рис. 2. Скейлинговые функции xF'(x), полученные для СС ($\mathrm{Fe}_{C}\mathrm{Mn}_{1-C}$) $_{75}\mathrm{P}_{16}\mathrm{B}_{6}\mathrm{Al}_{3}$ (C=0.65) ($\varepsilon=0.49,\ 1< H<10\ \mathrm{mT},\ -0.12< t<0.22,\ T_{f}=41.61\ \mathrm{K},\ 1/\delta=0.166,\ \beta=0.48$) (a) и ($\mathrm{Fe}_{C}\mathrm{Ni}_{1-C}$) $_{77}\mathrm{B}_{13}\mathrm{Si}_{10}$ (C=0.07) ($\varepsilon=0.76,\ 1< H<10\ \mathrm{mT},\ -0.24< t<0.35,\ T_{f}=15.63\ \mathrm{K},\ 1/\delta=0.055,\ \beta=0.22$) (b) с разной степенью асимметрии ε распределения обменных взаимодействий. Углы наклона штриховых линий соответствуют величинам $1/\delta$.

Рис. 3. Зависимость критических показателей β (1,2) и $1/\delta$ (3,4) фазового превращения ПМ–СС в массивных аморфных сплавах $(Fe_CMn_{1-C})_{75}P_{16}B_6Al_3$ и $(Fe_CNi_{1-C})_{77}B_{13}Si_{10}$ от степени асимметрии ε распределения обменных взаимодействий. I,3 — результаты $[9,13],\ 2,4$ — результаты настоящей работы.

Вместе с тем более веские аргументы в пользу гипотезы топологического разрушения фазового превращения ПМ–СС следуют из результатов, представленных на рис. 3. Помимо полученных в настоящей работе значений β и δ^{-1} здесь приведены результаты исследования массивных образцов ($D_E=3$) симметричных СС-систем ($\varepsilon=0$) [9], а также сплава (Fe_{0.15}Ni_{0.85})₇₅P₁₆B₆Al₃, который до появления настоящей работы был практически единственным, детально изученным аморфным СС с асимметричным распределением обменных взаимодействий $0.4 \leqslant \varepsilon \leqslant 0.7$ [13].

Существенно, что приведенные экспериментальные данные не только подтверждают фрактальное поведение аморфных СС, но и позволяют определить их низшую критическую размерность. Поскольку точка $\varepsilon_L=0.94\pm0.06$ пересечения приведенных на рис. З зависимостей друг с другом и с осью абсцисс почти совпадает с порогом $\varepsilon_P=1$ установления ФМ-порядка, величина D_L должна быть близка к фрактальной размерности $D_P=2.48\pm0.09$ [4] критического кластера. С учетом небольшой поправки, которая в линейном приближении равна $(\varepsilon_L-\varepsilon_P)\approx(D_E-D_P)$, получаем $D_L=2.51\pm0.12$, что очень хорошо согласуется с оценкой $D_L=2.5\pm0.2$, полученной для СС методом высокотемпературных разложений [8].

Отметим, что наряду с аморфными магнетиками, где области ФМ- и СС-порядка можно рассматривать как две независимые подсистемы [5,6] и применять для их описания теорию фракталов, существуют и такие СС, для которых этот подход заведомо неприемлем. Например, в некоторых сплавах благородных металлов с переходными (AgMn и PdMn [9]) критические показатели остаются постоянными ($\beta \approx 1$, $\delta \approx 3$) в интервале $0 \leqslant \varepsilon \leqslant 0.9$. Из этого можно сделать вывод,

что поведение их ФМ-подсистемы полностью определяется поведением окружающей СС-матрицы, т.е. нет оснований обсуждать какое-либо снижение топологической размерности пространства. В то же время при отжиге сплавов AuFe, сопровождаемом увеличением размера ФМ-кластеров за счет диффузии атомов железа из приграничного слоя, образуется золотая прослойка, выполняющая для ФМ-кластеров роль изолирующего ПМ-экрана. Это должно приводить и действительно приводит к разрушению кооперативной природы замерзания СС [1]. Данный пример весьма важен. Если даже для магнетиков одного класса критические свойства могут отличаться столь радикально, то с учетом огромного разнообразия СС-систем считать полученное выше значение D_L универсальным пока явно преждевременно. Этот вопрос, безусловно, требует дополнительных исследований.

В заключение отметим, что ввиду несовершенства современной технологии синтеза многокомпонентных низкоразмерных структур будет уместным выразить некоторые сомнения в перспективности общепринятого подхода, связанного с искусственным утонением образцов. Так, например, для СС с ГЦК-структурой инварного разреза $Fe_{65}(Ni_{C}Mn_{1-C})_{35}$ уменьшение их геометрического размера до величины $\sim 5\,\mathrm{nm}$, необходимой для появления размерных эффектов [3], вызывает структурное превращение $\Gamma \coprod K \to O \coprod K$ [14]. Ясно, что в таких условиях изучение магнитных фазовых переходов в состояние СС не представляется возможным. При использовании же массивных образцов несимметричных СС, где размер ФМ-корреляций, определяющий их реальную размерность, варьируется за счет изменения атомного состава сплавов или их термической обработки, конкретные результаты можно получить уже в ближайшем будущем.

Благодарим Е.Д. Белоколоса и Л.П. Гунько за полезные обсуждения.

Список литературы

- [1] K. Binder, A.P. Young. Rev. Mod. Phys. 58, 801 (1986).
- [2] Д. Займан. Модели беспорядка. Мир, М. (1982). 386 с.
- [3] J. Bass, J.A. Cowen. In: Recent progress in random magnets / Ed. W. Ryan. World Scientific, Singapore (1992). 334 p.
- [4] T. Nakayama, K. Yakubo, R.L. Orbach. Rev. Mod. Phys. 66, 381 (1994).
- [5] В.Г. Барьяхтар, А.Б. Сурженко, Г.А. Такзей. ЖЭТФ 102, 1674 (1992).
- [6] S.N. Kaul. J. Magn. Magn. Mater. 53, 5 (1985).
- [7] R.R.P. Singh, M.E. Fisher. J. Appl. Phys. **63**, *8*, 3994 (1988).
- [8] W.L. McMillan. Phys. Rev. **B30**, 476 (1984).
- [9] H. Bouchiat. J. de Phys. (Paris) 47, 71 (1986).
- [10] K. Moorjani, J.M.C. Coey. Magnetic glasses. Elsevier, Amsterdam (1984). 525 p.
- [11] T. Miyazaki, J. Okamoto, Y. Ando, M. Takahaschi. J. Phys. F: Met. Phys. 18, 1601 (1988).
- [12] А.Б. Сурженко. Письма в ЖЭТФ 57, 690 (1993).
- [13] P. Svedlindh, L. Lundgren, P. Nordblad, H.S. Chen. Europhys. Lett. 2, 805 (1986).
- [14] B.R. Coles, G. Williams. J. Phys. F: Met. Phys. 18, 1279 (1988).