Зеркальное отражение рентгеновских лучей в условиях резко асимметричной некомпланарной дифракции в кристалле с аморфной пленкой

© В.А. Бушуев, А.П. Орешко

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

E-mail: vab@surfsite.phys.msu.su

(Поступила в Редакцию 20 июля 2000 г.)

Проведен точный теоретический анализ угловой зависимости интенсивности зеркального отражения рентгеновских лучей в условиях скользящей некомпланарной дифракции в кристалле с аморфной пленкой на поверхности. Показано, что аномальное угловое поведение интенсивности зеркального отражения обладает уникально высокой чувствительностью к наличию тонких аморфных пленок с толщинами на уровне единиц нанометров. Наиболее оптимальные условия регистрации реализуются при углах скольжения, равных 1.5–4 критических угла полного внешнего отражения.

Дифракция рентгеновских лучей и явление полного внешнего отражения (ПВО) широко используются для анализа структуры тонких приповерхностных слоев полупроводниковых монокристаллов и кристаллов с аморфными и кристаллическими пленками [1] (см. также обзоры [2-4]). Использование резко асимметричных схем дифракции, в которых отражение осуществляется от атомных плоскостей, составляющих приблизительно угол Брэгга с поверхностью кристалла, позволяет значительно уменьшить глубину проникновения поля в кристалл и исследовать более тонкие слои с толщиной порядка 10 nm. В этих схемах либо падающий, либо дифрагированный пучок распространяется под малым скользящим углом к поверхности, сравнимым с критическим углом ПВО, поэтому важную роль в формировании дифракционной картины начинает играть явление зеркального отражения рентгеновских лучей. Динамическая теория резко асимметричной компланарной дифракции развита в работах [5-9].

В [10] впервые проведен расчет амплитуд зеркально отраженной и дифрагированной волн в принципиально новой схеме некомпланарной дифракции, в которой отражающие атомно-кристаллические плоскости перпендикулярны к поверхности кристалла (угол наклона по отношению к нормали $\psi = 0$), а падающая, преломленная и дифрагированная волны не лежат в одной плоскости. В этом случае как падающий, так и дифрагированный пучки одновременно могут составлять малые углы φ_0 и φ_h с поверхностью и претерпевать сильное зеркальное отражение (ЗО). Экспериментально такая геометрия дифракции была реализована позднее в [11] для исследования тонких кристаллических пленок алюминия с толщинами 7.5–200 nm, выращенных методом молекулярно-пучковой эпитакции на подложке GaAs.

Анализ дифракции в скользящей геометрии приводит к необходимости точного решения уравнений динамической теории в отличие от обычно используемого двухволнового приближения [1–4]. Такая теория, основанная в случае $\psi = 0$ на решении биквадратного дисперсионного уравнения, построена как для идеальных монокристаллов [12,13], так и для кристаллов с аморфной [14] и кристаллической [15] пленками на поверхности. Показана высокая чувствительность кривых дифракционного отражения (КДО) для анализа структурного совершенства приповерхностных слоев с толщинами от единиц нанометров и больше. Результаты многочисленных экспериментов по практической реализации выводов этой теории изложены в [1,4].

Следующий важный шаг был сделан в работах [16,17], в которых построена теория скользящей дифракции Брегга–Лауэ рентгеновских лучей на идеальном кристалле, отражающие плоскости которого уже не перпендикулярны поверхности, а составляют небольшой угол скоса $\psi \neq 0$ по отношению к нормали. Актуальность такого анализа определяется тем, что на практике при резке и последующей обработке кристаллов трудно обеспечить строгую параллельность поверхности и атомных плоскостей, а даже малые углы скоса ψ на уровне нескольких угловых минут приводят к заметному изменению формы дифракционных кривых [1,4,16,17]. Кроме того, кристаллы с углами скоса $\psi \sim 3-4^{\circ}$ специально используются в ряде полупроводниковых технологий.

В случае $\psi \neq 0$ дисперсионное уравнение становится уравнением четвертой степени и может быть решено только численно. При углах скольжения φ_0 или φ_h , которые превышают критический угол ПВО, влияние зеркально отраженной волны на дифракцию резко уменьшается и задача упрощается. В связи с этим в [18–20] развита приближенная модифицированная динамическая теория дифракции, которая позволяет решать задачу аналитически во всей области углов φ_0 , φ_h , за исключением узкого интервала вблизи критического угла ПВО, как для идеального кристалла [18,19], так и для кристалла с аморфной поверхностной пленкой [18,20].

Отметим, что во всех перечисленных выше работах анализировалось в основном лишь поведение кривых дифракционного отражения и совершенно не исследовалась угловая зависимость кривых зеркального отраже-

В настоящей работе на основе точного решения дисперсионного уравнения четвертой степени проведен детальный анализ угловых зависимостей зеркального и дифракционного отражений во всей области углов скольжения и углов скоса отражающих плоскостей по отношению к поверхности кристалла. Важность такого анализа явления ЗО в условиях асимметричной некомпланарной дифрации связана с высокой чувствительностью так называемой "зеркальной метки" [4] к тонким (порядка 1-3 nm) аморфным пленкам на поверхности. Показано, что кривые ЗО имеют ярко выраженный дисперсионный вид типа кривых выхода вторичных излучений в методе стоячих рентгеновских волн [4], однако интенсивность сигнала при этом гораздо выше, что позволяет говорить о развитии более экспрессных методов исследования тонких пленок. Основное внимание уделено рассмотрению малых углов скольжения рентгеновского излучения и анализу ситуаций, когда с приемлемой точностью можно пользоваться упрощенными уравнениями динамической теории.

1. Идеальный монокристалл

Рассмотрим вначале задачу о зеркальном и дифракционном отражении плоской монохроматической рентгеновской волны $\mathbf{E}_0 \exp(i\mathbf{k}_0\mathbf{r})$ от идеального монокристалла. Излучение падает из вакуума под произвольным углом скольжения φ_0 по отношению к поверхности так, что одновременно имеет место дифракционное отражение от атомно-кристаллических плоскостей, которые составляют произвольный угол ψ по отношению к нормали **n** к поверхности, направленной в глубь кристалла вдоль оси *z*.

Поле в области $z \le 0$ над поверхностью кристалла состоит из трех волн

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0 \exp(i\mathbf{k}_0 \mathbf{r}) + \mathbf{E}_s \exp(i\mathbf{k}_s \mathbf{r}) + \mathbf{E}_h \exp(i\mathbf{k}_h \mathbf{r}), \quad (1)$$

где E_0 , E_s и E_h — амплитуды падающей, зеркально отраженной и дифрагированной волн соответственно, $|\mathbf{k}_0| = |\mathbf{k}_s| = |\mathbf{k}_h| = k_0$, где $k_0 = 2\pi/\lambda$ — длина волнового вектора в вакууме, λ — длина волны, $k_{sz} = -k_{0z}$.

Рентгеновская волна возбуждает в кристалле ($z \ge 0$) когерентную суперпозицию проходящей и дифрагированной волн

$$\mathbf{E}(\mathbf{r}) = \mathbf{D}_0 \exp(i\mathbf{q}_0\mathbf{r}) + \mathbf{D}_h \exp(i\mathbf{q}_h\mathbf{r}), \qquad (2)$$

где $D_{0,h}$ — амплитуды, \mathbf{q}_0 и $\mathbf{q}_h = \mathbf{q}_0 + \mathbf{h}$ — волновые векторы проходящей и дифрагированной волн в кристалле соответственно, \mathbf{h} — вектор обратной решетки. В силу непрерывности тангенциальных (вдоль

поверхности кристалла) компонент волновых векторов падающей и преломленной волн волновой вектор в среде q_0 изменяется лишь вдоль нормали, т.е.

$$\mathbf{q}_0 = \mathbf{k}_0 + k_0 \varepsilon \mathbf{n},\tag{3}$$

где вследствие малости рентгеновской поляризуемости $\chi \sim 10^{-5}$ искомая величина аккомодации отвечает условию $\varepsilon \ll 1$.

Из уравнения Максвелла следует, что амплитуды D_0 , D_h в (2) и величина ε в (3) удовлетворяют следующей системе динамических уравнений [1,4]:

$$(\varepsilon^2 + 2\gamma_0\varepsilon - \chi_0)D_0 - C\chi_{\bar{h}}D_h = 0, \qquad (4.1)$$

$$(\varepsilon^2 + 2\gamma_{h0}\varepsilon - \chi_0 - \alpha)D_h - C\chi_h D_0 = 0, \qquad (4.2)$$

где $\gamma_0 = k_{0z}/k_0$, $\gamma_{h0} = (\mathbf{k}_0 + \mathbf{h})_z/k_0$, χ_g — Фурье-компоненты поляризуемости кристалла $\chi(\mathbf{r})$ ($g = 0, h, \bar{h}$), C = 1 и соз 2ϑ для σ - и π -состояний поляризации излучения соответственно, ϑ — угол между падающим излучением и отражающими атомными плоскостями, величина $\alpha = 1 - (\mathbf{k}_0 + \mathbf{h})^2/k_0^2 = 2\Delta\vartheta \sin 2\vartheta_B$ характеризует отклонение угла дифракции $\Delta\vartheta = \vartheta - \vartheta_B$ по отношению к точному углу Брэгга θ_B , который определяется из соотношения $h = 2k_0 \sin \vartheta_B$. Если φ_0 — скользящий угол падения излучения на кристалл, то

$$\gamma_0 = \sin \varphi_0, \quad \gamma_{h0} = \gamma_0 - \psi_B, \tag{5}$$

где $\psi_B = 2 \sin \psi \sin \vartheta_B$ — эффективный параметр угла наклона отражающих плоскостей ($\psi > 0$, $h_z < 0$). Если $\varphi_0, \psi \ll 1$, то $\gamma_0 \approx \varphi_0, \psi_B \approx 2\psi \sin \vartheta_B$.

Пусть φ_h — угол выхода дифрагированного излучения в вакуум по отношению к поверхности, тогда *z*-проекция $k_{hz} = -k_0 \gamma_h$, где $\gamma_h = \sin \varphi_h \ (\varphi_h > 0)$. Дифракционное отражение в область z < 0 (геометрия Брэгга) реализуется при таких углах скольжения φ_0 , что $\gamma_0 < \psi_B$, т. е. $\gamma_{h0} < 0$ в (4) и (5). Угол выхода φ_h при заданных углах φ_0 и ψ определяется выражением [16]

$$\gamma_h = (\gamma_{h0}^2 + \alpha)^{1/2},$$
 (6)

где условие $\alpha > -\gamma_{h0}^2$ задает допустимые отклонения $\Delta \vartheta$ от угла Брэгга. Обратная ситуация ($\alpha < -\gamma_{h0}^2$), при которой дифрагированная волна очень быстро затухает в вакууме (см. [1–3]), здесь не рассматривается.

Система (4) имеет нетривиальное решение для амплитуд $D_{0,h}$ при условии равенства нулю определителя этой системы

$$(\varepsilon^2 + 2\gamma_0\varepsilon - \chi_0)(\varepsilon^2 + 2\gamma_{h0}\varepsilon - \chi_0 - \alpha) - C^2\chi_h\chi_{\bar{h}} = 0.$$
(7)

Уравнение (7) является уравнением четвертой степени относительно величины ε . Следовательно, оно имеет четыре корня ε_j и внутри кристалла могут распространяться четыре проходящие и четыре дифрагированные волны с амплитудами D_{gj} (g = 0, h; j = 1, 2, 3, 4). Простое аналитическое решение (7) имеется лишь в

случае $\psi = 0$, когда отражающие плоскости перпендикулярны поверхности кристалла. Действительно, при этом $\gamma_{h0} = \gamma_0$ и уравнение (7) сводится к биквадратному. Дифракция рентгеновских лучей в этой геометрии подробно рассматривалась в работах [12–15]. В общем же случае возможно лишь численное решение дисперсионного уравнения (7). При этом в случае толстого кристалла следует выбирать только такие решения, для которых Im $\varepsilon_j > 0$. Анализ показывает [16], что в геометрии Брэгга данному условию удовлетворяют только два корня, которые мы обозначим как ε_1 и ε_2 .

Для определения амплитуд полей в (1) и (2) запишем условия непрерывности тангенциальных компонент электрических и магнитных полей на поверхности кристалла. Учтем при этом, что в случае скользящих углов непрерывность магнитного поля эквивалентна непрерывности первой производной электрического поля по координате *z*. В итоге получим следующую систему из четырех уравнений:

$$E_{0} + E_{s} = D_{01} + D_{02},$$

$$\gamma_{0}(E_{0} - E_{s}) = \Gamma_{01}D_{01} + \Gamma_{02}D_{02},$$

$$E_{h} = R_{1}D_{01} + R_{2}D_{02},$$

$$-\gamma_{h}E_{h} = \Gamma_{h1}R_{1}D_{01} + \Gamma_{h2}R_{2}D_{02},$$
(8)

где

$$\gamma_0 = \sin \varphi_0, \quad \gamma_h = \sin \varphi_h,$$

$$\Gamma_{0j} = \gamma_0 + \varepsilon_j, \quad \Gamma_{hj} = \gamma_{h0} + \varepsilon_j \quad (j = 1, 2).$$
(9)

При выводе (8) мы использовали связь $D_{hj} = R_j D_{0j}$ между амплитудами дифрагированных и проходящих волн в кристалле, которая следует из (4.1), где

$$R_j = (\varepsilon_j^2 + 2\gamma_0\varepsilon_j - \chi_0)/C\chi_{\bar{h}}.$$
 (10)

Решение системы (8) для амплитудных коэффициентов $R_s = E_s/E_0$ зеркального и $R_h = E_h/E_0$ брэгговского отражений имеет вид

$$R_s = rac{\gamma_0 - \gamma_1}{\gamma_0 + \gamma_1}, \quad R_h = rac{R_1 -
ho R_2}{1 -
ho} (1 - R_s),$$
 (11)

где введены следующие обозначения:

$$\gamma_1 = \frac{\Gamma_{01} - \rho \Gamma_{02}}{1 - \rho}, \quad \rho = \frac{R_1(\gamma_h + \Gamma_{h1})}{R_2(\gamma_h + \Gamma_{h2})}.$$
 (12)

Величины $\gamma_{0,h}$ и Γ_{gj} определены в (9), а R_j — в (10). Сомножитель 1 + R_s в выражении для R_h (11) в ясном виде учитывает влияние ЗО на дифракцию. Соотношения (11) с точностью до обозначений совпадают с соответствующими выражениями, полученными в работах [1,16], в которых, однако, основное внимание уделялось лишь анализу дифракционного отражения R_h .

Соотношения (11) и (12) представляют собой точное решение задачи о зеркальном и дифракционном отражении рентгеновских лучей от идеального монокристалла. Они справедливы для любых углов скольжения φ_0 и выхода φ_h при $\gamma_0 < \psi_B$ и любых допустимых отклонений $\Delta \vartheta$ от точного угла Брэгга.

Рассмотрим некоторые частные предельные случаи. Если излучение падает на кристалл с большой угловой отстройкой $\Delta \vartheta$ от области сильного дифракционного отражения, т.е. при $|\alpha| \gg |\chi_h|$, то парциальный коэффициент отражения R_1 стремится к нулю. В этом случае из (12) следует, что $\rho \to 0$ и $\gamma_1 \to \gamma_0 + \varepsilon_1$, где, как видно из (10) при $R_1 = 0$, величина $\varepsilon_1 = \gamma_s - \gamma_0$. Здесь $\gamma_s = (\gamma_0^2 + \chi_0)^{1/2}$ при произвольных углах скольжения φ_0 . В итоге получим, что коэффициент зеркального отражения (11) сводится к известной формуле Френкеля $R_s = r_s = (\gamma_0 - \gamma_s)/(\gamma_0 + \gamma_s)$. Дифракционное отражение отсутствует, так как $R_h \to R_1 = 0$.

Рассмотрим теперь случай, когда угол скольжения φ_0 много больше критического угла ПВО $\varphi_c = |\text{Re}\chi_0|^{1/2}$. Их анализа (7) с учетом малости поляризуемости χ_h можно показать, что в области углов $\varphi_{0,h} \gg \varphi_c$ корни дисперсионного уравнения (7) сильно различаются по величине: $\varepsilon_1 \ll \varepsilon_2$, где $\widetilde{\varepsilon_2} \approx |\gamma_{h0}| + (\gamma_h^2 + \chi_0)^{1/2} \approx 2|\gamma_{h0}| + (\alpha + \chi_0)/2|\gamma_{h0}|,$ а Re $\varepsilon_1 \sim \chi_{0r}/2\gamma_0 \ll \gamma_0$. Отсюда следует, что $R_1 \ll R_2$ (см. (10)), $\gamma_h + \Gamma_{h1} \ll \gamma_h + \Gamma_{h2}$ в (12), т.е. $ho \ll 1$ и $\gamma_1 \approx \gamma_0 + \varepsilon_1$, а при вычислении ε_1 можно пренебречь квадратичными по ε_1 слагаемыми в (4) и (7). Эти же результаты вытекают и из точного численного решения уравнения (7). Поскольку $\text{Im}\,\varepsilon_2 \ll \text{Im}\,\varepsilon_1$, то поле с амплитудой D₀₂ аномально глубоко проникает в кристалл. Поскольку в нашем случае $\varepsilon_1 \ll \gamma_0$, то $R_s \ll 1$, поэтому можно пренебречь влиянием зеркального отражения на процесс дифракции. В то же время особенности поведения суммарного волнового поля (2) в кристалле в области сильного дифракционного отражения кардинальным образом сказываются на угловой зависимости зеркального отражения. В итоге из (11) и (12) получим, что амплитудные коэффициенты зеркального и дифракционного отражений примут следующий простой вид:

где

$$\varepsilon_{1} = (1/4\gamma) \Big\{ \chi_{0}(1-b) - \alpha b \\ \pm \big[\big(\chi_{0}(1+b) + \alpha b \big)^{2} - 4C^{2}b\chi_{h}\chi_{\bar{h}} \big]^{1/2} \Big\}, \quad (14)$$

 $R_s=-rac{arepsilon_1}{2\gamma_0+arepsilon_1}, \quad R_h=rac{2\gamma_0arepsilon_1-\chi_0}{C\chi_{ar h}},$

(13)

 $b = -\gamma_0/\gamma_{h0}$ — коэффициент асимметрии брэгговского отражения (b > 0), знак в (14) выбирается из условия Im $\varepsilon_1 > 0$. Поскольку $\varepsilon_1 \ll \gamma_0$, угловая зависимость зеркального отражения $R_s(\Delta \vartheta)$ определяется главным образом поведением функции $\varepsilon_1(\Delta \vartheta)$.

Этот же результат для R_s (13) можно получить и из более простых соображений. Действительно, поскольку при достаточно больших углах скольжения зеркальное отражение слабо влияет на процесс дифракции и в кристалле распространяется только одна сильная волна, вместо (8) можно записать более простые соотношения: $E_0 + E_s = D_{01}, \ \gamma_0(E_0 - E_s) = (\gamma_0 + \varepsilon_1)D_{01}, \ откуда$ непосредственно следует выражение (13) для R_s .

Рис. 1. Кривые дифракционного отражения от идеального кристалла в зависимости от угловой отстройки $\Delta \vartheta$ от угла Брэгта при углах скольжения $\varphi_0 = 50'(a)$ и 13'(b), рассчитанные согласно точной (кривые *I*) и приближенной теорий (кривые *2*). Отражение Si(220), Cu K_{α} -излучение, $\psi = 4^{\circ}$.

Рис. 2. Угловые зависимости кривых зеркального отражения от идеального кристалла при углах скольжения $\varphi_0 = 50'(a)$ и 13' (b). 1 — результаты точной теории, 2 — приближенная теория, 3 — зеркальное отражение без учета дифракции; Si(220), Cu K_{α} , $\psi = 4^{\circ}$.

На рис. 1 и 2 приведены соответственно кривые дифракционного отражения $P_R = (\gamma_h/\gamma_0) |R_h|^2$ и кривые зеркального отражения $P_s = |R_s|^2$, рассчитанные для отражения (220) CuK_{α} -излучения от монокристалла кремния с углом скоса $\psi = 4^\circ$ при различных углах скольжения φ_0 . Сплошные кривые 1 рассчитаны в рамках точной теории (11), основанной на численном решении общего уравнения четвертой степени (7), а штриховые кривые 2 — на основе приближенных соотношений (13). Как видно из рис. 1, a и 2, a, кривые отражения, построенные при помощи точной и приближенной теорий для угла скольжения $\varphi_0 = 50'$, который почти в 4 раза превышает критический угол ПВО $\varphi_c = 13.38'$, практически совпадают. Расчеты показывают, что при углах скольжения $\varphi_0 \geq (2-3)\varphi_c$ можно пользоваться более простой теорией.

При меньших углах $\varphi_0 \leq (1-2)\varphi_c$ различие в кривых отражения становится значительным (рис. 1, *b* и 2, *b*) и приближенная теория дает неверный результат. Так, при большом отклонении $\Delta \vartheta$ от угла Брэгга кривая ЗО должна асимптотически стремиться к соответствующему френелевскому значению, вычисленному без учета дифракции. Такое асимптотическое поведение имеет место

только для кривой ЗО, построенной по точной теории. В то же время при $|\alpha| \gg |\chi_h|$ из (14) следует, что $\varepsilon_1 \approx \chi_0/2\gamma_0$. Подстановка этого выражения в R_s (13) приводит к соотношению $R_s \approx -\chi_0/4\gamma_0^2$, справедливому лишь в области достаточно больших углов скольжения.

Отличительной особеннсотью ЗО в условиях дифракции является ярко выраженная аномалия в угловой зависимости $P_s(\Delta \vartheta)$, имеющая вид кривой дисперсионного типа с минимумом и максимумом вблизи углов дифракции $\Delta \vartheta_{1,2} = \Delta \vartheta_0 \mp \Delta \vartheta_B$, соответствующих краям области полного дифракционного отражения, где

$$\Delta \vartheta_0 = -\chi_0 (1+b)/(2b\sin 2\vartheta_B)$$
$$\Delta \vartheta_B = C|\chi_h|/(b^{1/2}\sin 2\vartheta_B).$$

Впервые такое аномальное поведение ЗО обсуждалось в работе [4]. Отметим, что примерно такой же вид имеют кривые выхода вторичных излучений $I_{\rm SP} \sim 1 + |R_h|^2 + 2\sigma_i {\rm Re} R_h$ с малой глубиной выхода по сравнению с длиной экстинкции $L_{\rm ex} = \lambda (\gamma_0 |\gamma_{h0}|)^{1/2} / \pi C |\chi_h|$, где $\sigma_i = C |\chi_{hi}| / \chi_{0i}$, $\chi_{gi} = {\rm Im} \chi_g$ [1,4,21]. Аналогия становится более явной, если величину ε_1 в (13) выразить через коэффициент дифракционного отражения.

$$R_s \approx -(\chi_0/4\gamma_0^2)(1+\sigma R_h), \qquad (15)$$

где $\sigma = C\chi_h/\chi_0$. Как и в методе стоячих рентгеновских волн [1], второй сомножитель в (15) характеризует амплитуду полного поля на поверхности кристалла. Однако в отличие от σ_i величина σ для ЗО в (15) определяется отношением комплексных поляризуемостей χ_h и χ_0 , а не их мнимых частей.

Наличие минимума и максимума на кривой ЗО $P_s(\Delta \vartheta)$ (15) вызвано тем, что в области дифракционного отражения величина $P_h \approx 1$, а фаза R_h почти линейно меняется от π при $\Delta \vartheta = \Delta \vartheta_1$ до нуля при $\Delta \vartheta = \Delta \vartheta_2$. При этом $R_h(\Delta \vartheta_{1,2}) \approx \mp b^{1/2}$. В случае малых углов скольжения ($\gamma_0 \ll \psi_B$) коэффициент асимметрии отражения $b \ll 1$. С увеличением угла φ_0 , когда $\gamma_0 \approx \psi_B$, величина $b \gg 1$, поэтому контраст кривой ЗО P_s возрастает. Одновременно с этим уменьшаются ширина КДО и угловая область аномалии на кривой ЗО.

Глубина проникновения поля в условиях зеркального отражения при больших углах скольжения $L_s \gg L_{ex}$, где $L_s = \lambda/(2\pi \text{Im } \gamma_s)$, поэтому формирование преломленной волны и поля ЗО в области сильного дифракционного отражения определяется когерентной суперпозицией проходящей и дифрагированной волн. В отличие от этого в области малых углов $\varphi_0 \leq \varphi_c$ глубина проникновения поля $L_s \leq L_{ex}$, т.е. она определяется главным образом явлением ПВО. Дифракционное отражение формируется в более тонком слое и приближается к кинематическому, что приводит к уменьшению максимума КДО и к ее уширению (кривая 1 на рис. 1, b). Кривая зеркального отражения при этом также сильно сглаживается и имеет

вид неглубокого минимума (кривая *I* на рис. 2, *b*). Так, для параметров, которые использовались при расчетах кривых на рис. 1 и 2, глубины $L_s = 1.9 \,\mu\text{m}, L_{\text{ex}} = 0.1 \,\mu\text{m},$ b = 0.35 и $L_s = 0.03 \,\mu\text{m}, L_{\text{ex}} = 0.08 \,\mu\text{m}, b = 0.07$ при углах скольжения $\varphi_0 = 50$ и 13' соответственно.

Кристалл с аморфной пленкой

Рассмотрим теперь отражение рентгеновских лучей от кристалла, на поверхности которого имеется однородная аморфная пленка с произвольной толщиной dи поляризуемостью χ_1 . Поля в вакууме и кристалле определяются соотношениями (1) и (2) соответственно. Поле в пленке в общем случае состоит из четырех волн:

$$\mathbf{E}(\mathbf{r}) = \mathbf{A}_0 \exp(i\mathbf{a}_0\mathbf{r}) + \mathbf{A}_s \exp(i\mathbf{a}_s\mathbf{r}) + \mathbf{B}_0 \exp(i\mathbf{b}_0\mathbf{r}) + \mathbf{B}_s \exp(i\mathbf{b}_s\mathbf{r}), \qquad (16)$$

где $A_{0,s}$ — амплитуды проходящей и зеркально отраженной волн в пленке, возбужденных падающим излучением, $B_{s,0}$ — амплитуды проходящей и зеркально отраженной волн, возбужденных в пленке брэгговской волной, выходящей в эту пленку из кристалла. Из условий непрерывности волновых векторов для тангенциальных компонент следует, что $a_{0t} = a_{st} = k_0 \cos \varphi_0$, $b_{0t} = b_{st} = k_0 \cos \varphi_h$. Нормальные компоненты при этом имеют вид: $a_{0z} = -a_{sz} = k_0 s_0$, $b_{0z} = -b_{sz} = k_0 s_h$, где

$$s_0 = (\gamma_0^2 + \chi_1)^{1/2}, \quad s_h = (\gamma_h^2 + \chi_1)^{1/2}.$$
 (17)

Условия непрерывности электрического и магнитного полей на верхней и нижней границах пленки приводят к следующей системе из восьми уравнений для амплитуд волн в (1), (2) и (16). На границе вакуум–пленка

$$E_0 + E_s = A_0 + A_s, \quad \gamma_0(E_0 - E_s) = s_0(A_0 - A_s),$$

$$E_h = B_0 + B_s, \quad -\gamma_h E_h = s_h(B_0 - B_s). \quad (18.1)$$

На границе пленка-подложка

$$A_{0}f_{0} + A_{s}f_{s}^{-1} = \sum_{j} D_{0j}f_{0j},$$

$$s_{0}(A_{0}f_{0} - A_{s}f_{0}^{-1}) = \sum_{j} \Gamma_{0j}D_{0j}f_{0j},$$

$$B_{0}f_{h} + B_{s}f_{h}^{-1} = \sum_{j} R_{j}D_{0j}f_{hj},$$

$$s_{h}(B_{0}f_{h} - B_{s}f_{h}^{-1}) = \sum_{j} \Gamma_{hj}R_{j}D_{0j}f_{hj},$$
(18.2)

где $j = 1, 2, f_g = \exp(ik_0s_gd), f_{gj} = \exp(ik_0\Gamma_{gi})d$ — коэффициенты, которые учитывают изменение фазы волн и их поглощение при распространении в пленке.

Решение системы (18) для амплитудных коэффициентов зеркального и дифракционного отражений можно представить в следующем компактном виде, удобном для анализа:

$$R_s = \frac{r_0 + Q_0 f_0^2}{1 + r_0 Q_0 f_0^2}, \quad R_h = \frac{R_1 - \rho_d R_2}{1 - \rho_d} (1 + R_s) F, \quad (19)$$

где

$$Q_{0} = \frac{s_{0} - \gamma_{1}}{s_{0} + \gamma_{1}}, \quad \gamma_{1} = \frac{\Gamma_{01} - \rho_{d}\Gamma_{02}}{1 - \rho_{d}},$$
$$\rho_{d} = \frac{R_{1}(s_{h} + \Gamma_{h1}Q_{h})}{R_{2}(s_{h} + \Gamma_{h2}Q_{h})},$$
$$Q_{h} = \frac{1 - r_{h}f_{h}^{2}}{1 + r_{h}f_{h}^{2}}, \quad r_{g} = \frac{\gamma_{g} - s_{g}}{\gamma_{g} + s_{g}}, \quad (g = 0, h),$$
$$F = \frac{1 - r_{h}}{1 - r_{h}f_{h}^{2}}\frac{1 + Q_{0}}{1 + Q_{0}f_{0}^{2}}\exp[ik_{0}(s_{0} + s_{h} - \psi_{B})d].$$

Здесь $s_g = (\gamma_g^2 + \chi_1)^{1/2}$, $r_{0,h}$ — френелевские коэффициенты отражения от полубесконечной среды с поляризуемостью пленки χ_1 при углах скольжения φ_0 и φ_h соответственно.

Как и в предыдущем разделе, рассмотрим вначале некоторые частные случаи. Если d = 0 (пленка отсутствует), то f_g , $f_{g,j} = 1$, F = 1, $\rho_d = \rho$ и общие формулы (19) сводятся к (11) для идеального кристалла. В случае толстой пленки ($k_0 \text{Im } s_0 d \gg 1$) факторы поглощения стремятся к нулю ($f_0 \rightarrow 0, F \rightarrow 0$), поэтому дифракция отсутствует ($R_h = 0$), а зеркальное отражение $R_s = r_0$ определяется френелевским коэффициентом отражения от среды с поляризуемостью пленки χ_1 .

Если $|\alpha| \gg |\chi_h|$ (пренебрежимо слабая дифракция), то $\rho_d \ll 1$ (см. раздел 2), $\gamma_1 = (\gamma_0^2 + \chi_0)^{1/2}$ и мы приходим к известной формуле Эйри [22], описывающей толщинные осцилляции на кривой зеркального отражения от системы пленка–подложка,

$$R_s = (r_0 + r_1 f_0^2) / (1 + r_0 r_1 f_0^2),$$
(20)

где $r_1 = (s_0 - \gamma_s)/(s_0 + \gamma_s)$ — френелевский коэффициент отражения от границы пленка-подложка, $\gamma_s = (\gamma_0^2 + \chi_0)^{1/2}$. Если $\chi_1 = \chi_0$, т. е. рентгенооптические плотности пленки и подложки совпадают, то $r_1 = 0$, $r_0 = r_s$, и из (20) следует, что $R_s = r_s$. Иными словами, вдали от области дифракции зеркальное отражение от такой системы пленка-подложка, образно говоря, "не замечает" присутствия пленки на поверхности кристалла. В то же время, как показано будет далее, в условиях дифракции угловая зависимость ЗО от этой же системы весьма сильно отличается от ЗО от кристалла без пленки (рис. 4).

Наиболее интересная ситуация реализуется при углах скольжения $\varphi_{0,h} > \varphi_c$. В этом случае кривые зеркального отражения демонстрируют уникально высокую чувствительность к наличию очень тонкого аморфного слоя на поверхности, толщина которого может составлять единицы нанометров.

На рис. З показаны кривые интенсивности зеркального отражения $I_s = |R_s|^2 I_0$, где I_0 — интенсивность падающего рентгеновского пучка, от монокристалла кремния с аморфной пленкой SiO₂ на поверхности при различных толщинах пленки и разных углах скольжения (Си K_{α} -излучение, отражение (220), $\psi = 4^{\circ}$). Для окисной пленки кремния критический угл ПВО равен

Рис. 3. Влияние толщины аморфной пленки на угловые аномалии в интенсивности зеркального отражения. Угол скольжения φ_0 (arc.min): a - 20, b - 40. Толщина пленки d (nm): l - 1, 2 - 2, 3 - 3, 4 - 4, 5 - 0 (идеальный кристалл). Интенсивность падающего излучения $I_0 = 10^5$ срѕ, пленка SiO₂, отражение (220), Си K_{α} -излучение, $\psi = 4^{\circ}$.

12.67'. Из рис. 3 видно, что поведение кривых ЗО весьма заметным образом зависит от наличия пленки и от ее толщины. Более ярко эта зависимость проявляется при увеличении угла скольжения (сравни кривые на рис. 3, b и 3, a). Впервые на возможность использования 3O для анализа структуры тончайших приповерхностных слоев было указано в обзоре [4] (метод "зеркальной метки"), в котором, однако, отсутствует подробное теоретическое рассмотрение этого интересного явления. Кривые ЗО в целом близки к кривым выхода фотоэлектронов и флуоресцентного излучения из тонких слоев, в связи с чем зеркально отраженную волну можно рассматривать как один из каналов вторичного излучения [4]. Несмотря на то что при углах скольжения $\varphi_0 > \varphi_c$ коэффициент ЗО очень мал, тем не менее интенсивность этого отражения может быть достаточно высокой и значительно (на 1-3 порядка при прочих равных условиях) превышать скорость счета фотоэлектронов или флуоресцентных квантов в методе стоячих рентгеновских волн.

Оценим отношение интенсивности флуоресцентного излучения P_F из пленки к интенсивности ЗО $P_s = \chi_1^2/16\gamma_0^4$ на ближнем участке хвоста кривой ПВО ($\varphi_0 \sim (2-4)\varphi_c$). Поскольку P_F определяется величиной поглощенной энергии в пленке с толщиной d, то $P_F \approx (ck_0\chi_{1i}d/\gamma_0\beta)(\Delta\Omega/4\pi)$, где χ_{1i} — мнимая часть поляризуемости пленки, c — относительная концентрация атомов, флуоресцентное излучение которых регистрируется, β — коэффициент электронной конверсии, $\Delta\Omega$ — телесный угол регистрации. В итоге получим, что

$$P_F/P_s \approx 8c\beta^{-1}(d/\lambda)(\gamma_0^3\chi_{1i}/\chi_1^2)\Delta\Omega.$$

Если, например, $d \approx 1$ nm, $\lambda \approx 0.1$ nm, $\beta \sim 10-50$, $c \approx 0.5$, $\Delta\Omega \approx 2\pi$ и угол скольжения $\varphi_0 \sim 2\varphi_c$, то для типичных значений поляризуемости $|\chi_1| \sim 10^{-5}$ и $\chi_{1i} \sim 0.02|\chi_1|$ получим, что $P_F/P_s \sim 3 \times (10^{-3}-10^{-2})$, т.е. интенсивность зеркально отраженной волны более чем на 1–2 порядка превышает интенсивность выхода рентгеновской флуоресценции. Именно с этим обстоятельством связаны ожидаемые перспективы по использованию метода "зеркальной метки".

При углах скольжения $\varphi_{0,h} > \varphi_c$ из общих соотношений (19) можно получить более простое приближенное выражение для коэффициента зеркального отражения R_s . Поскольку в этом случае $\rho_d \ll 1$, то $\gamma_1 = \varphi_0 + \varepsilon_1$, следовательно,

$$R_s \approx (r_0 + R_e)/(1 + r_0 R_e),$$
 (21)

где

$$R_e = (\chi_1 - 2\varphi_0\varepsilon_1) \exp(2ik_0s_0d) / [2\varphi_0(2\varphi_0 + \varepsilon_1)]$$

Здесь $r_0 pprox -\chi_1/4arphi_0^2$, $s_0 pprox arphi_0 + \chi_1/2arphi_0$.

Чувствительность кривых ЗО к наличию аморфной пленки на поверхности кристалла объясняется тем, что в области сильного дифракционного отражения

Рис. 4. Влияние угла наклона атомных плоскостей ψ на угловую зависимость интенсивности зекрального отражения от кристалла с пленкой (сплошные линии) и от идеального кристалла (штриховые линии). Толщина пленки аморфного кремния d = 3 nm, угол скольжения $\varphi_0 = 40'$, угол наклона $\psi = 2^{\circ}$ (1) и 5° (2). Интенсивность пучка $I_0 = 10^5$ cps, Si(220), Cu K_{α} .

резко изменяется зеркальное отражение от границы пленка-кристалл. Действительно, вне области дифракции $\varepsilon_1 \approx \chi_0/2\varphi_0$ и величина R_e в (21) пропорциональна разности поляризуемостей $\chi_1 - \chi_0$, тогда как в области дифракции поляризуемость кристалла χ_0 заменяется на эффективную поляризуемость $2\varphi_0\varepsilon_1(\Delta\vartheta)$, причем Im $(\varepsilon_1) \gg \chi_{0i}/2\varphi_0$. В итоге $R_e \neq 0$ даже в случае равенства поляризуемостей $\chi_1 = \chi_0$ пленки и подложки и, кроме этого, резко возрастает также и роль фазового фактора $\exp(2ik_0s_0d)$, зависящего от толщины пленки.

На рис. 4 представлены кривые ЗО в случае пленки аморфного кремния на поверхности монокристалла кремния ($\chi_1 = \chi_0$) при двух различных углах скоса ψ . Видно, что чувствительность зеркального отражения к наличию пленки увеличивается с уменьшением угла ψ . Расчеты показывают, что кривые ЗО от идеального кристалла и от кристалла с пленкой отличаются на 10–30% даже в случае сверхтонких пленок с толщиной ~ 0.5 nm.

Основаня трудность для практической реализации данного метода заключается в необходимости достаточно высокой коллимации падающего излучения как по углу скольжения ($\delta \varphi \sim 1'$), так и по углу дифракции ($\delta \vartheta \sim 1''$). Требуемые условия на расходимость рентгеновских лучей в горизонтальной плоскости могут быть достигнуты путем использования резко асимметричного монохроматора с коэффициентом асимметрии $b \sim 1/40$, а в вертикальной плоскости — за счет использования микрофокусных трубок и узких щелей на выходе коллиматора (см. работы [1,18] и приведенные в них ссылки).

3. Основные результаты и выводы

Таким образом, в настоящей работе развита точная динамическая теория зеркального отражения рентгеновских лучей от кристалла с аморфной пленкой в условиях резко асимметричной некомпланарной брэгговской дифракции, т.е. теория, основанная на решении полного дисперсионного уравнения четвертой степени. Задачи дифракции и зеркального отражения решены в самом общем виде, и полученные результаты справедливы для всего интервала углов скольжения падающего пучка и углов выхода дифрагированного излучения. На основе развитой теории показано, что угловая зависимость интенсивности зеркального отражения обладает высокой чувствительностью к наличию и толщине тонкой (единицы нанометров) аморфной пленки на поверхности кристалла. Задача легко обобщается на случай ЗО от неоднородной пленки с произвольным распределением электронной плотности по глубине с помощью введения системы рекуррентных соотношений, обобщающих известные формулы Паррата.

Интенсивность зеркального отражения достаточно высока для проведения экспрессного анализа тонких приповерхностных и переходных слоев. Чувствительность метода к толщине пленки составляет примерно 0.5 nm и повышается с увеличением угла скольжения, однако при этом уменьшается интенсивность отраженного сигнала. Наиболее оптимальными являются углы скольжения в области от 1.5 до 3–4 критических углов полного внешнего отражения. При меньших углах скольжения чувствительность резко снижается. На практике более предпочтительно использовать кристаллы с углом наклона отражающих плоскостей на уровне 1–5°. Использование излучения с длиной волны 0.15–0.2 nm снижает требования к коллимации излучения и к угловому разрешению метода.

Рассмотренный в работе метод показывает возможность проведения неразрушающего анализа структуры сверхтонких поверхностных слоев и границ раздела по данным зеркального отражения в условиях брэгговской дифракции.

Авторы признательны Р.М. Имамову за стимулирующие и полезные обсуждения проблемы и основных результатов настоящей работы.

Список литературы

- А.М. Афанасьев, П.А. Александров, Р.М. Имамов. Рентгенодифракционная диагностика субмикронных слоев. Наука, М. (1989). 152 с.
- [2] А.В. Андреев. УФН 145, 1, 113 (1985).
- [3] М.А. Андреева, С.Ф. Борисова, С.А. Степанов. Поверхность. Физика, химия, механика 4, 5 (1985).
- [4] А.М. Афанасьев, Р.М. Имамов. Кристаллография 40, 3, 446 (1995).
- [5] P. Farwig, H.W. Schurmann. Z. Phys. 204, 2, 489 (1967).
- [6] S. Kishino. J. Phys. Soc. Japan. 31, 6, 1168 (1971).
- [7] T. Bedynska. Phys. Stat. Sol. (a) 19, 1, 365 (1973).
- [8] S.F. Rustichelli. Phil. Mag. **31**, *1*, 1 (1975).
- [9] J. Hartwig. Phys. Stat. Sol. (a) 37, 2, 417 (1976).
- [10] В.Г. Барышевский. Письма в ЖТФ 2, 3, 112 (1976).
- [11] W.C. Marra, P. Eisenberger, A.Y. Cho. J. Appl. Phys. 50, 11, 6927 (1979).
- [12] A.M. Afanas'ev, M.K. Melkonyan. Acta Cryst. A39, 2, 207 (1983).
- [13] П.А. Александров, М.К. Мелконян, С.А. Степанов. Кристаллография 29, 2, 376 (1984).
- [14] P.A. Aleksandrov, A.M. Afanasiev, M.K. Melkonyan, S.A. Stepanov. Phys. Stat. Sol. (a) 81, 1, 47 (1984).
- [15] П.А. Александров, А.М. Афанасьев, С.А. Степанов. Поверхность. Физика, химия, механика 8, 9 (1984).
- [16] П.А. Александров, А.М. Афанасьев, С.А. Степанов. Кристаллография 29, 2, 197 (1984).
- [17] P.A. Aleksandrov, A.M. Afanasiev, S.A. Stepanov. Phys. Stat. Sol. (a) 86, 1, 143 (1984).
- [18] А.М. Афанасьев, С.М. Афанасьев, А.В. Есаян, Ф.Р. Хашимов. Поверхность. Физика, химия, механика 12, 35 (1988).
- [19] A.M. Afanasiev, O.G. Melikyan. Phys. Stat. Sol. (a) 122, 2, 459 (1990).
- [20] A.M. Afanasiev, A.V. Esayan. Phys. Stat. Sol. (a) 126, 2, 303 (1991).
- [21] В.А. Бушуев, Р.Н. Кузьмин. Вторичные процессы в рентгеновской оптике. Изд-во МГУ, М. (1990). 112 с.
- [22] М. Борн, Э. Вольф. Основы оптики. Наука, М. (1973). 719 с.