Дислокации как линейные топологические дефекты

© Г.А. Малыгин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: malygin.ga@pop.ioffe.rssi.ru

(Поступила в Редакцию 18 сентября 2000 г. В окончательной редакции 11 октября 2000 г.)

> Дислокации и дислокационная пластичность кристаллов рассматриваются на широком фоне других физических явлений, таких как сверхтекучесть жидкого гелия и сверхпроводники второго рода. Объединяет их с ними то, что дислокации, как и квантовые вихри в сверхпроводниках и сверхтекучем гелии, являются топологическими дефектами. Они образуются при фазовом переходе со спонтанным нарушением симметрии в результате Бозе-конденсации акустических фононов. Обсуждаются общие вопросы эволюции ансамблей линейных топологических дефектов и характер образуемых ими пространственных структур.

Понятие дислокации как дефекта, сильно снижающего сопротивление кристалла кристаллографическому сдвигу и обеспечивающего элементарный акт его пластической деформации, было введено в работах [1,2] чисто феноменологическим образом. Это не помешало в течение последующих десятилетий объяснить с помощью дислокаций основные закономерности пластической деформации кристаллических тел. В настоящее время само понятие пластичности кристалла подразумевает в основном его дислокационную пластичность, т.е. трансляционное перемещение дислокаций по наиболее плотноупакованным плоскостям, в результате чего происходит пластическое формоизменение кристаллического тела. В общем случае следует говорить о дислокационно-дисклинационной пластичности в условиях, когда вследствие заторможенности трансляций в кристалле появляются повороты, а в случае высоких температур — о вакансионной пластичности, когда преимущественный вклад в формоизменение кристалла вносят потоки вакансий.

В течение длительного времени оставался неясным микроскопический механизм возникновения дислокаций в первоначально бездислокационном кристалле. Это обстоятельство не являлось сдерживающим фактором при проведении упомянутых выше исследований, поскольку в реальном кристалле обычно имеется достаточное число дислокационных источников типа источников Франка– Рида. Их действие обеспечивает рост плотности дислокаций на самом начальном этапе деформации. При дальнейшем ее продолжении вступает в действие механизм двойного поперечного скольжения винтовых дислокаций, обеспечивающий быстрое увеличение плотности дислокаций с ростом деформации.

В отсутствие в кристалле дислокаций и источников Франка–Рида образование в нем дислокаций, как полагают, связано с наличием на поверхности кристалла геометрических концентраторов напряжений в виде ступенек атомных размеров. Вблизи концентраторов напряжений локальное напряжение может достигать теоретической прочности на сдвиг $\approx G/2\pi$, где G — модуль сдвига, что и приводит к зарождению в этом месте дислокаций.

После образования дислокаций их перемещение по кристаллу вдали от концентратора напряжений осуществляется под действием ничтожно малых напряжений $(10^{-5}-10^{-4})G$. Сопротивление движению дислокаций по плоскостям скольжения могут оказывать различные содержащиеся в кристалле дефекты (примесные атомы, выделения фаз, дислокации леса и т.д.), а в кристаллах с направленными атомными связями — решеточный рельеф Пайерлса. Эти препятствия увеличивают напряжение торможения дислокаций до $(10^{-3}-10^{-2})G$ и обеспечивают устойчивость дислокационных петель после снятия приложенного к кристаллу напряжения вследствие закрепления (пиннинга) линии дислокации препятствиями.

В чем состоит причина низкого сопротивления решетки перемещению дислокаций в отсутствие в ней специальных препятствий, ограничивающих это движение? Согласно [3,4], образование дислокаций вблизи концентраторов напряжений в первоначально бездислокационном кристалле обусловлено спонтанным нарушением его симметрии (регулярности расположения атомов) и Бозе-конденсацией акустических фононов. Очевидно, что связанное с Бозе-конденсацией когерентное состояние фононов и обеспечивает низкое сопротивление решетки движению дислокаций. Таким образом, можно считать, что пластичность кристалла есть проявление его сверхтекучести, вызванной образованием и движением в нем дислокаций, т.е. она принадлежит к тому же классу явлений, что и сверхпроводимость металлов и сверхтекучесть 4 Не и 3 Не.

В первом разделе настоящей работы обсуждаются с учетом сказанного выше общие вопросы образования и свойства топологических дефектов типа дислокаций и квантовых вихрей в конденсированных средах, во втором разделе — вопросы эволюции их ансамблей, в третьем — образуемые ими пространственно неоднородные структуры.

Дислокации как топологические дефекты

Дислокации рассмотрены далее на широком физическом фоне, выходящем за рамки физики прочности и пластичности кристаллов. Этот фон образует широкий класс топологических дефектов, возникающих в различных конденсированных средах (кристаллах, жидких кристаллах, сверхтекучих жидкостях) в результате фазовых переходов со спонтанным нарушением симметрии [5–9]. Их можно квалифицировать также в качестве нелинейных топологических возбуждений среды при действии на нее тех или иных внешних полей.

Так, в случае сверхпроводников второго рода топологические дефекты в виде квантовых вихрей (флюксоидов) возникают в результате приложения к сверхпроводнику магнитного поля напряженностью $H > H_{c1}$. В сверхтекучем ⁴Не и ³Не квантовые вихри появляются после приложения к сверхтекучей жидкости механического импульса, обеспечивающего ее движение со скоростью $V > V_c$. В случае кристаллов возникновение квантовых вихрей в виде дислокаций вызвано, как уже было сказано выше, приложением к кристаллу локального механического напряжения порядка теоретической прочности решетки на сдвиг.

В литературе в последнее время широко обсуждается еще один вид топологических дефектов — гипотетические космические струны — линейные образования, несущие мощный гравитационный заряд. Согласно [10,11], они возникают на ранней стадии расширения Вселенной и являются местами, где в последующем происходит конденсация материи и зарождение галактик и звезд. Как и другие топологические дефекты, космические струны являются результатом фазового перехода при резком расширении и остывании первичной горячей и сверхплотной космической материи.

Что объединяет все эти топологические дефекты и позволяет рассматривать их как один класс явлений, несмотря на сильное различие физических сред, в которых они образуются? Таких моментов несколько.

Первый из них, как отмечено выше, состоит в том, что рассматриваемые дефекты формируются при фазовых превращениях со спонтанным нарушением симметрии. Второй момент заключается в том, что, хотя дефекты возникают в квантовых системах, после своего образования они могут рассматриваться как классические макроскопические объекты [4]. Связь с квантовой системой находит отражение лишь в величине и виде квантового (топологического) заряда, переносимого дефектом. В случае вихрей в сверхпроводнике это квант магнитного потока, в сверхтекучем гелии — квант циркуляции скорости частиц жидкости, для дислокаций это вектор Бюргерса (квант циркуляции смещения), а в случае космических струн — гравитационный заряд на единицу длины струны. Третий общий момент, объединяющий дефекты, связан с процессом Бозе-конденсации частиц соответствующих квантовых систем, в которых эти дефекты образуются. Бозе-конденсат может быть отделен от нормального состояния энергетической щелью (как в случае куперовских электронов и атомов ⁴He) или быть бесщелевым (при образовании дислокаций [3,4], квантовых вихрей в *А*-фазе ³He [8] и космических струн [12,13]) с участием так называемых глэдстоуновских бозонов с нулевой минимальной энергией. В этом случае параметр порядка контролируется не энергетической щелью, а величиной и направлением волнового вектора [3,8].

Четвертый объединяющий их момент состоит в том, что рассматриваемые топологические дефекты обладают собственной энергией на единицу длины (т.е. линейным натяжением) и сингулярным полем, напряженность которого спадает с расстоянием от линии дефекта, как r^{-1} . В этом отношении указанные дефекты можно квалифицировать как "заряженные" струны.

Пятым моментом является то, что все рассматриваемые топологические возбуждения могут быть получены с помощью стандартных процедур теории калибровочных полей [3,4,11]. Теория их образования близка в этом отношении к современной теории образования элементарных частиц как различного рода возбуждений вакуума [14].

Наконец, шестым и не до конца еще в теоретическом отношении разработанным моментом является эволюция ансамбля линейных топологических дефектов после их возникновения в той или иной реальной физической среде. Уравнения калибровочных полей описывают механизм образования отдельных дефектов, но не их ансамбля, поскольку среднее расстояние между дефектами в ансамбле может значительно превышать расстояние, на котором квантовые эффекты играют заметную роль. Вопрос об эволюции ансамблей линейных топологических дефектов рассмотрен в следующем разделе.

2. Уравнения эволюции ансамбля линейных дефектов

Как уже было сказано выше, после своего возникновения топологические дефекты могут рассматриваться как классические макроскопические образования на расстояниях, превышающих среднее расстояние между частицами микроскопического ансамбля, в котором они возникают. С ростом величины внешнего поля, вызывающего их появление, число дефектов, как показывает опыт [15–21], возрастает и они начинают взаимодействовать друг с другом.

В настоящее время в экспериментальном и теоретическом отношении наиболее исследованными являются ансамбли дислокаций [18–21] и квантовых вихрей в сверхтекучем гелии [15–17]. Попытки сформулировать уравнения эволюции для вихрей в сверхпроводниках имеются в [22,23], а для космических струн — в [11,24,25]. В случае дислокаций и вихрей в гелии уравнения изменения со временем *t* средней плотности *n*(*t*) вихрей или дислокаций были получены вначале из модельных соображений с целью описания соответствующих экспериментальных зависимостей [15,20,21]

$$\frac{\mathrm{d}n}{\mathrm{d}t} = w + \left(\delta' - \frac{\gamma}{d}\right)n + \alpha n^{3/2} - \beta n^2. \tag{1}$$

Здесь n(t) = L(t)/V, где L(t) — общая длина дислокаций в кристалле или вихрей в сосуде в данный момент времени, V — объем кристалла или сосуда, w — плотность источников вихрей (в случае дислокаций — концентраторов напряжений и источников Франка-Рида), δ' — коэффициент размножения дислокаций и вихрей на различных неоднородностях в соответствующих средах, коэффициент γ/d описывает убыль плотности топологических дефектов вследствие их ухода из тонких кристаллов или каналов (для вихрей в гелии) толщиной d, α — коэффициент размножения дислокаций (вихрей) при их пересечении друг с другом, β — коэффициент аннигиляции дефектов противоположных знаков.

Уравнения (1) были сформулированы для плотности вихрей в гелии и плотности дислокаций в разное время и независимо друг от друга. Теоретическое обоснование этого уравнения в случае вихрей имеется в [16,17], а в случае дислокаций — в [21,26]. На рис. 1 и 2 показаны результаты сопоставления экспериментальных данных для эволюции плотности соответственно вихрей в ⁴He [15] и дислокаций в алюминиево-магниевом сплаве [21] в частном случае уравнения (1)

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha n^{3/2} - \beta n^2. \tag{2}$$

На рис. 1, a сплошная прямая показывает зависимость (2) для безразмерной плотности вихрей $\bar{n} = n/n_0$

$$\frac{\mathrm{d}\bar{n}}{\mathrm{d}t} = \frac{\alpha^2}{\beta} \bar{n}^{3/2} \left(1 - \bar{n}^{1/2}\right),\tag{3}$$

где $n_0 = (\alpha/\beta)^2$. Кривая на рис. 1, *b* демонстрирует зависимость той же величины от $\bar{n}^{1/2}$.

Сплошная кривая на рис. 2 показывает зависимость коэффициента размножения дислокаций с деформацией от безразмерной плотности дислокаций

$$\delta \frac{\mathrm{d}\bar{n}}{\mathrm{d}\varepsilon} = 4\bar{n}^{1/2} \left(1 - \bar{n}^{1/2}\right). \tag{4}$$

Уравнение (4) получено из (1) с учетом того, что в случае дислокаций $dn/dt = (dn/d\varepsilon)\varepsilon$, где ε — деформация, $\dot{\varepsilon} = bnu$ — скорость пластической деформации, b — вектор Бюргерса, u — скорость перемещения дислокаций, $\alpha = k_1bu$, $\beta = k_2bu$, $n_0 = (\alpha/\beta)^2 = (k_1/k_2)^2$, $\delta = 4/k_2$. Восходящие ветви парабол на рис. 1, b и 2 описывают процесс размножения линейных дефектов в результате

Рис. 1. Зависимость скорости образования квантовых вихрей в ⁴Не от плотности вихрей \bar{n} [15] согласно (3) (*a*) и от величины $\bar{n}^{1/2}$ (*b*).

Рис. 2. Зависимость коэффициента размножения дислокаций в Al-Mg сплаве при разных температурах в интервале 77-473 K от величины $\bar{n}^{1/2}$ [21].

их пересечения, а нисходящие ветви — процесс аннигиляции дефектов противоположных знаков.

Как видно, уравнения (2)–(4) находятся в хорошем согласии с экспериментом. Очевидно, что уравнение (1) описывает процесс эволюции ансамбля линейных топологических дефектов независимо от микроскопической квантовой системы, их порождающей. Оно отражает кинетические особенности дефектов как классических образований и характерные для линейных дефектов процессы генерации, размножения и аннигиляции. На это важное обстоятельство ранее не обращалось внимания.

3. Пространственные структуры

Еще одним характерным свойством рассматриваемых дефектов является образование ими пространственных структур. Эти структуры можно разделить на однородные (хаотические [16], упорядоченные [27], сетчатые [28]) и неоднородные (полосовые [19,21], ячеистые [18,21]). Наиболее исследованными в экспериментальном и теоретическом отношениях являются сейчас однородные и неоднородные дислокационные структуры [18,19,21,28–30]. В качестве примера далее будет продемонстрирован механизм формирования ячеистой структуры в дислокационном ансамбле.

Для этого запишем уравнение (1) в виде

$$\frac{\partial n}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{j} = -\nu n + \alpha n^{3/2} - \beta n^2, \qquad (5)$$

где $\nu = (\gamma/d - \delta') > 0$ — коэффициент, определяющий скорость иммобилизации дислокаций на препятствиях, d — длина свободного пробега дислокаций до этих препятствий (в случае тонких кристаллов d — толщина кристалла в направлении движения дислокаций).

Существуют по крайней мере два источника возникновения пространственно неоднородных дислокационных потоков. Один из них связан с дальнодействующим взаимодействием дислокаций и возникновением корреляционного диффузионного потока в результате экранирования дислокаций одного знака дислокациями другого знака [21,29,30]

$$\mathbf{j}^{\mathrm{cr}} = \hat{D}_1^{\mathrm{cr}} \cdot \boldsymbol{\nabla} n + \hat{D}_2^{\mathrm{cr}} \cdot (\boldsymbol{\nabla}^2) \boldsymbol{\nabla} n + \dots, \qquad (6)$$

где $\hat{D}_{1,2}^{\rm cr}$ — коэффициенты диффузии первого и второго порядков.

Другой механизм связан с близкодействующим (контактным) взаимодействием дислокаций, вызывающим снижение скорости дислокаций и инверсию диффузионного потока в местах повышенной плотности дислокаций вследствие дислокационного (деформационного) упрочнения дислокационного ансамбля [21]

$$\mathbf{j}^{df} = -(1-M)\hat{D}_1^{df} \cdot \boldsymbol{\nabla} n - (1-M)\hat{D}_2^{df} \cdot (\boldsymbol{\nabla}^2)\boldsymbol{\nabla} n + \dots, \quad (7)$$

где $M = -\partial \ln u / \partial \ln n > 0$ — коэффициент упрочнения и инверсии (M > 1) дислокационного потока.

После подстановки выражений для потоков (6) или (7) в уравнение (5) находим, что плотность дислокаций оказывается неустойчивой к пространственным флуктуациям $\delta n \sim \exp(\omega t + i\mathbf{q} \cdot \mathbf{r})$ с критическим волновым вектором $q_c = (D_1/2D_2)^{1/2}$ и критическим инкрементом

$$\omega(q_c) = \left(\frac{\partial \Phi}{\partial n}\right)_0 + (M-1)\frac{D_1^2}{4D_2} > 0, \qquad (8)$$

где через $\Phi(n)$ обозначена правая часть уравнения (5). Производная $(\partial \Phi / \partial n)_0$ соответствует значениям *n*, когда $\Phi(n) = 0$.

Рис. 3. Распределение дислокаций в ячеистой структуре в сечении z = 0 согласно (10*a*) при $f = 10^2$.

При соотношении кинетических коэффициентов в (5) $\nu\beta/\alpha^2 < 1$ уравнение $\Phi(n) = 0$ имеет три корня [21]

$$n_1 = 0, \quad n_2 \approx \left(\frac{\nu}{\alpha}\right)^2, \quad n_3 \approx \left(\frac{\alpha}{\beta}\right)^2.$$
 (9)

Анализ показывает, что особая точка n_2 является неустойчивым фокусом, а n_3 — седлом. Пренебрегая в (5) и (7) диффузионными потоками второго порядка, находим, что стационарное решение нелинейного уравнения (5) имеет вид

$$n(x, y, z) = \frac{n_3}{\left[1 + (f - 1)\sin^2\left(\pi \frac{\pm x \pm y \pm z}{\Lambda}\right)\right]^2} \qquad (10a)$$

при условии $f = (n_3/n_2)^{1/2} = \alpha^2/\nu\beta > 1$. Оно описывает пространственно-периодическую (ячеистую) дислокационную структуру с периодом

$$\Lambda = 4\pi\sqrt{3} \left[\frac{(M-1)D_1}{\nu}\right]^{1/2}$$
(10*b*)

и плотностью дислокаций в стенках ячеек n_3 , а в объеме ячеек $n_2 < n_3$. Как видно из соотношений (9), величина n_2 определяется конкуренцией процессов иммобилизации и размножения дислокаций, а величина n_3 конкуренцией процессов размножения и аннигиляции дислокаций. На рис. 3 в качестве иллюстрации (10*a*) показано распределение плотности дислокаций n/n_3 в ячеистой структуре в плоскости z = 0 при соотношении плотностей дислокаций в границах и объеме ячеек $n_3/n_2 = 10^4$.

Что касается неоднородных структур в других ансамблях линейных топологических дефектов, то в ансамблях квантовых вихрей в сверхпроводниках и сверхтекучем гелии они, насколько известно автору, не наблюдались. Как видно из приведенного выше расчета, для возникновения таких структур требуется выполнение определенных и достаточно жестких условий. Еще одно обстоятельство представляет интерес в этой связи, а именно крупномасштабная структура современной Вселенной в виде ячеистого характера распределения в ней материи (галактик и звезд) [31]. Согласно гетерогенному механизму зарождения галактик в результате аккреации первичной материи на космических струнах [10,11], можно по аналогии с ячеистыми дислокационными структурами предполагать, что неоднородный характер распределения материи во Вселенной обусловлен ячеистым характером распределения в ней космических струн. Этот гипотетический механизм формирования крупномасштабных неоднородностей может рассматриваться в качестве альтернативного традиционному механизму их образования вследствие квантовых флуктуаций плотности первичной материи.

Таким образом, рассмотрение дислокаций на широком фоне других топологических дефектов показывает, что дислокации в целом обладают свойствами, характерными для большинства этих дефектов; это придает явлению пластической деформации кристаллов общефизический характер. Кроме того, из сопоставления уравнений эволюции ансамбля дислокаций и ансамбля вихрей в сверхтекучем гелии следует, что они описываются одним и тем же уравнением, учитывающим кинетические особенности их как не точечных, а линейных объектов. Это позволяет заключить, что уравнения эволюции других линейных топологических дефектов и образуемые ими структуры должны иметь аналогичный вид.

Список литературы

- [1] E. Orowan. Zs. Phys. 89, 9, 605 (1934).
- [2] G.I. Taylor. Proc. Roy. Soc. A145, 855, 362 (1934).
- [3] M. Wadati, H. Matsumoto, H. Umezawa. Phys. Rev. B18, 8, 4077 (1978).
- [4] H. Umezawa, H. Matsumoto, M. Tachiki. Thermo field dynamics and condensed states. North-Holland Publ., Amsterdam– N. Y.–Oxford (1982) [рус. пер.: Термополевая динамика и конденсированные состояния. Мир, М. (1985)].
- [5] G. Toulouse, M. Kleman. J. Phys. Lett. 37, 1, 149 (1976).
- [6] V.P. Mineev, G.E. Volovik. Phys. Rev. B18, 7, 3197 (1978).
- [7] N.D. Mermin. Rev. Modern. Phys. 51, 3, 591 (1979).
- [8] Г.Е. Воловик. УФН. **143**, *1*, 73 (1984).
- [9] И.А. Овидько, А.Е. Романов. Сб.: Теоретическое и экспериментальное исследование дисклинаций. ФТИ им. А.Ф. Иоффе АН СССР, Л. (1986). С. 6.
- [10] M. Hindmarsh, T.W. Kibbel. Rep. Progr. Phys. 58, 5, 47 (1995).
- [11] A. Vilenkin, E.P. Shellard. Cosmic strings and other topological defects. Cambridge Univ. Press, Cambridge (1994).
- [12] A. Vilenkin, A.E. Everette. Phys. Rev. Lett. 48, 26, 1867 (1982).
- [13] N. Turok. Phys. Rev. Lett. 76, 7, 1015 (1996).
- [14] J. Polchinsky. String theory. Cambridge Univ. Press, Cambridge (1998).
- [15] W.F. Vinen. Proc. Roy. Soc. (London) A242, 1231, 493 (1957); A243, 1234, 400 (1957).
- [16] K.W. Schwarz. Phys. Rev. B38, 4, 2398 (1988).
- [17] S.K. Nemirovskii, W. Fiszdon. Rev. Modern. Phys. 67, 1, 37 (1995).

- [18] Ф.Р.Н. Набарро, З.С. Базинский, Д.В. Хольт. Пластичность чистых монокристаллов. Металлургия, М. (1967). 202 с.
- [19] Б.И. Смирнов. Дислокационная структура и упрочнение кристаллов. Наука, Л. (1981). 232 с.
- [20] U.F. Kocks, A.S. Argon, M.F. Ashby. Thermodynamics and kinetics of slip. Pergamon Press, N.Y. (1975).
- [21] Г.А. Малыгин. УФН 169, 9, 979 (1999).
- [22] J.R. Clem. Phys. Rev. **B26**, *5*, 2463 (1982).
- [23] С.Е. Савельев, Л.И. Фишер, В.А. Ямпольский. ЖЭТФ 112, 3, 936 (1997).
- [24] P.P. Avellino, R.R. Caldwall, C.J. Martins. Phys. Rev. B56, 8, 4568 (1997).
- [25] C.J. Martins, E.P. Shellard. Phys. Rev. D54, 4, 2535 (1996).
- [26] Г.А. Малыгин. ФТТ 38, 8, 2418 (1996).
- [27] U. Essmann, H. Trauble. Phys. Lett. A24, 9, 526 (1967).
- [28] С.А. Амелинкс. Методы прямого наблюдения дислокаций. Мир, М. (1968).
- [29] Ш.Х. Ханнанов. ФММ 10, 34 (1992).
- [30] Г.Ф. Сарафанов. ФТТ 39, 9, 155 (1997).
- [31] M.S. Turner, J.A. Tyson. Rev. Modern. Phys. 71, 2, 145 (1999).