Упорядочение интеркалированной примеси вблизи температуры коллапса поляронной зоны в Ag_xTiTe₂

© А.Н. Титов, С.Г. Титова*

Уральский государственный университет, 620083 Екатеринбург, Россия * Институт металлургии Уральского отделения Российской академии наук, 620016 Екатеринбург, Россия

E-mail: alexander.titov@usu.ru

(Поступила в Редакцию 6 июня 2000 г. В окончательной редакции 15 сентября 2000 г.)

Методом рентгеноструктурного анализа исследована фазовая диаграмма интеркалатного соединения Ag_xTiTe₂ вблизи температуры коллапса поляронной зоны. Подтверждена предполагавшаяся ранее невозможность реализации однородного состояния в той области концентрации носителей заряда, где уровень Ферми расположен между нижним краем и серединой примесной зоны, при температурах, близких к температуре коллапса поляронной зоны. Обнаружен обратимый переход с упорядочением интеркалированного серебра при нагреве до температуры, близкой к температуре коллапса поляронной зоны. Предложено объяснение, связывающее такой переход с усилением кулоновского отталкивания между атомами примеси вследствие локализации носителей заряда.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 98-03-32656а), Министерства образования РФ (грант № 97-0-7.1-169), а также при частичной поддержке гранта REC-005 US CRDF.

Интеркалация диселенида и дителлурида титана переходными металлами и серебром приводит к локализации носителей заряда в виде поляронов малого радиуса [1]. С точки зрения фазовой диаграммы это обстоятельство обусловливает ограничение возможности существования однофазного состояния в области концентраций носителей, где выполняется условие $E_L < E_F < E_d, E_L$ — энергия нижнего края поляронной зоны, *E_F* — энергия Ферми, Е_d — энергия, соответствующая середине поляронной зоны [2]. Это условие существенно при расположении поляронной зоны выше уровня Ферми исходного материала и выполняется в случае использования серебра в качестве интеркаланта [3]. Ограничение возможности существования однофазного состояния обусловлено доминированием вклада электронной подсистемы в термодинамические функции материала. Однако отклонение от температуры коллапса поляронной зоны, в том числе и охлаждение, приводит к приблизительно экспоненциальному уменьшению плотности состояний поляронной зоны [4] и, следовательно, столь же быстрому уменьшению вклада электронной подсистемы в общие термодинамические функции материала. Это позволяет предположить существование ниже температуры коллапса поляронной зоны температуры, при охлаждении ниже которой критерий, ограничивающий возможность существования однофазного состояния, перестает быть справедливым. Таким образом, в подобных материалах должен наблюдаться переход от однородного (однофазного) состояния типа твердого раствора, границы существования которого определяются взаимодействием ионов интеркаланта, к неоднородному (неоднофазному) состоянию при подходе к температуре максимальной локализации. Кроме того, можно ожидать, что локализация электронов способна обеспечить увеличение кулоновского отталкивания между центрами локализации заряда и как следствие упорядочение этих центров приблизительно в той же области температур. Очевидно, что указанные явления можно наблюдать только в материалах, обладающих высокой подвижностью ионной подсистемы, достаточной для того, чтобы процессы релаксации подрешетки интеркаланта занимали разумные времена.

Для проверки этих рассуждений мы предприняли рентгеноструктурное исследование системы $Ag_x TiTe_2$, вполне отвечающей перечисленным критериям, в температурном интервале от комнатной температуры до температуры, заведомо превышающей температуру коллапса поляронной зоны.

Фазовая диаграмма Ag_xTiTe₂, полученная электрохимически при температурах выше 150°C (рис. 1), демонстрирует отсутствие однофазной области при сколь угодно малых концентрациях серебра [5]. Проводимость при интеркалации уменьшается примерно в 1000 раз и становится активационной [5]. Наблюдается сближение слоев решетки матрицы вследствие интеркалации [3], и зависимость относительного уменьшения проводимости от относительной деформации описывается законом, типичным для остальных интеркалатных материалов на основе дихалькогенидов титана с поляронным типом локализации носителей заряда [1]. Концентрационная зависимость проводимости хорошо описывается в рамках теории протекания в предположении наличия локализованных центров Ti-Ag-Ti, образующих подрешетку, в которой могут существовать поляроны малого радиуса [6]. Все это позволяет заключить, что интеркалация

Рис. 1. Высокотемпературная часть фазовой диаграммы системы Ag_xTiTe₂. На вставках показано упорядочение серебра в соответствующих фазах.

Рис. 2. Концентрационная зависимость параметров элементарной ячейки Ag_xTiTe₂, полученная на образцах, медленно охлажденных и долго хранившихся при комнатной температуре.

серебром дителлурида титана приводит к образованию поляронов, причем поляронная зона расположена несколько выше уровня Ферми исходного материала, и увеличение концентрации интеркаланта позволяет повысить уровень Ферми до энергии выше верхнего края поляронной зоны [3].

В то же время рентгенографические исследования при комнатной температуре медленно охлажденных и долго хранившихся при этих условиях образцов Ag_x TiTe₂ с 0 < x < 0.5, попадающих, согласно данным [5], в область смеси фаз TiTe₂ и $Ag_{1/2}$ TiTe₂, показали совпадение их рентгенограмм с данными для TiTe₂. При этом постоянные решетки (рис. 2) оказались монотонной функцией содержания серебра при x < 0.65, что указывает на однофазность материала, приготовленного таким образом, и исключает предположение о присутствии второй фазы в виде недетектируемых рентгенографически включений. При быстром охлаждении фазы с упорядочением серебра, обнаруженные в [5] (см. рис. 1), сохраняются в течение несколькоих дней. Таким образом,

можно заключить, что температура коллапса поляронной зоны, вблизи которой становятся справедливыми ограничения на возможность существования однофазного состояния [2], расположена между комнатной температурой и температурой 150°С, выше которой была исследована фазовая диаграмма.

Целью настоящей работы является установление характера влияния коллапса поляронной зоны на возможность упорядочения поляронов, связанных с примесными центрами, и фазовую диаграмму Ag_rTiTe₂ при различном положении уровня Ферми относительно поляронной зоны. Для этого в температурном интервале 20-400°С исследовалась структура образцов следующих составов: Ag_{0.3}TiTe₂, Ag_{0.55}TiTe₂, Ag_{0.57}TiTe₂, Ag_{0.65}TiTe₂ и Ag_{0 75}TiTe₂. Положение уровня Ферми относительно поляронной зоны оценивалось из следующих соображений. Состав Ag_{0.3}TiTe₂ попадает в двухфазную область при температуре выше 150°С; следовательно, для него должно выполняться условие [2] $E_L < E_F < E_d$. Составы Ag0.55 TiTe2 и Ag0.57 TiTe2 являются наименее обогащенными серебром из однофазных при температуре выше 150°С; следовательно, согласно [2], для них должно быть справедливо условие $E_F \approx E_d$. В образце состава Ag_{0.75}TiTe₂ проводимость выше перехода при 130-150°С продолжает оставаться металлической, а коэффициент Зеебека сохраняет отрицательный знак (п-тип проводимости), в [3] это было интерпретировано как результат заполнения примесной зоны и выход уровня Ферми в область нелокализованных состояний; следовательно, для этого образца выполняется условие $E_F > E_h$. Состав Ag_{0.65}TiTe₂ является промежуточным между $Ag_{0.57}$ TiTe₂ и $Ag_{0.75}$ TiTe₂, поэтому для него можно записать $E_d < E_F < E_h$. Здесь E_F — энергия Ферми, E_L , *E_h* и *E_d* — соответственно энергия нижнего и верхнего краев и середины поляронной зоны.

1. Эксперимент

Использованные в работе образцы были получены стандартным методом импульсного синтеза. Методика получения и аттестации подробно описана в [5]. Состав образцов, попадающих в области, однофазные при температуре выше 150°С, проверялся электрохимически с использованием градуировочных кривых, полученных ранее [3,5]. Рентгенофазовый анализ образца состава Ag_{0.57}TiTe₂ проводился на дифрактометре STOE (Си $K_{\alpha 1}$ -излучение, Ge-монохроматор, трансмиссионная мода, 5°-линейный позиционно-чувствительный детектор, интервал углов $2\theta = 2-80^{\circ}$). Образец помещался в вакуумированный капилляр диаметром 1 mm, и проводилась съемка в высокотемпературной камере. Образцы Ag0,30 TiTe2 и Ag0,55 TiTe2 исследовались с помощью высокотемпературной камеры ГПВТ-1500 в вакууме до 10⁻⁴ Torr на рентгеновском аппарате ДРОН-3.0 (Си K_{α} -излучение, Ni-фильтр, интервал углов $2\theta = 22-60^{\circ}$). Для образцов Ag_{0.65}TiTe₂ и Ag_{0.75}TiTe₂ высокотемпературная рентгенография проводилась в синхротронном излучении (СИ) с применением высокотемпературной камеры ГПВТ-1500, позиционночувствительного детектора, монохроматора, позволявшего получить длину волны СИ $\lambda = 1.9373$ Å, в интервале межплоскостных расстояний d = 1.6-3.6 Å(ВЭПП-3, ИЯФ СО РАН). Выдержка перед съемкой в каждом случае при требуемой температуре составляла 30 min. Данные для всех образцов, полученные с использованием разной аппаратуры и различной длины волны излучения, тем не менее демонстрируют общие характерные детали температурной эволюции, что указывает на сопоставимость этих результатов.

2. Результаты и обсуждение

Рентгенограммы перечисленных образцов при различных температурах и температурные зависимости объемов элементарной ячейки приведены на рис. 3 и 4 соответственно.

Для образца Ag_{0.3}TiTe₂ видно, что нагрев приводит к появлению дополнительных линий, соответствующих сверхструктуре $2a_0 \times 2a_0 \times c_0$ (фаза со структурой типа Ag_{3/4}TiTe₂ [5]), наблюдающихся в интервале температур 50-130°C и исчезающих при дальнейшем нагреве. Повторение циклов нагрев/охлаждение показало, что переход упорядочение/разупорядочение является обратимым, хотя и требует длительной выдержки (около недели) образца при комнатной температуре. Температурная зависимость параметров решетки демонстрирует сильный разброс результатов в области существования упорядочения, связанный с резким возрастанием ширины линий в этом температурном интервале. Обусловленная этим низкая точность рентгенографических данных не позволила нам определить, соответствуют ли дополнительные рефлексы выпадению другой фазы и упорядочению серебра во всем образце. Последнее, впрочем, представляется более вероятным, поскольку формирование сверхструктуры $2a_0 \times 2a_0$ в случае заполнения интеркалантом октаэдрического набора позиций ван-дерваальсовой щели возможно при содержании серебра x = 0.25, близком к содержанию серебра в данном образце. С другой стороны, согласно электрохимическим данным, материал является двухфазным при нагревании выше 150°С. Поскольку локализация электронов проводимости при нагреве приводит не только к увеличению вклада электронной подсистемы в общие термодинамические функции, но и к усилению кулоновского отталкивания между центрами локализации, связанными с интеркалированным серебром, можно предположить, что существует температурный интервал, в котором локализация уже достаточна для упорядочения этих центров, но недостаточна для распада фазы по механизму [2].

В образце $Ag_{0.55}$ TiTe₂ сверхструктурные линии, соответствующие упорядочению $a_0 \times a_0 \sqrt{3} \times c_0$, наблюдаются уже при комнатной температуре. С другой стороны, значения параметров решетки этого образца хорошо ложатся на концентрационную зависимость. Это означает, что наличие упорядочения — результат скорее недостаточной выдержки образца при комнатной температуре, чем устойчивости этой сверхструктуры. Вблизи температуры $100-110^{\circ}$ С в этом образце, так же как и в Ag_{0.3}TiTe₂, наблюдается резкое появление линий, индицируемых как соответствующих сверхструктуре $2a_0 \times 2a_0 \times c_0$ и исчезающих при дальнейшем нагреве. При нагреве выше 120° С наблюдается только наличие линий от сверхструктуры $a_0 \times a_0 \sqrt{3} \times c_0$ (фаза Ag_{1/2}TiTe₂ на рис. 1) в полном соответствии с высокотемпературной частью фазовой диаграммы.

В образце $Ag_{0.57}TiTe_2$ при комнатной температуре не наблюдается линий, отличных от линий $TiTe_2$. Это хорошо согласуется с данными для $Ag_{0.3}TiTe_2$ и подчеркивает то, что наличие сверхструктуры в $Ag_{0.57}TiTe_2$ является, скорее всего, артефактом, а также указывает на то, что при комнатной температуре упорядочение серебра может быть обеспечено только ион-ионным взаимодействием.

Возникновение сверхструктурных линий в Ag_{0 57}TiTe₂ наблюдается при нагреве до примерно такой же температуры, как и для остальных образцов, однако дальнейшая эволюция структуры гораздо сложнее. В полном согласии с высокотемпературной фазовой диаграммой при нагреве до 150°C наблюдается появление линий сверхструктуры $a_0 \times a_0 \sqrt{3} \times c_0$ (фаза Ag_{1/2}TiTe₂ на рис. 1). При дальнейшем нагреве выше температуры 300°C в дополнение к этим линиям появляются линии, соответствующие сверхструктуре $2a_0 \times 2a_0 \times c_0$ (фаза Ag_{3/4}TiTe₂ на рис. 1). Это соответствует попаданию в область смеси фаз Ag_{1/2}TiTe₂ и Ag_{3/4}TiTe₂ в согласии с фазовой диаграммой. Затем, при нагреве до 400°С, наблюдается исчезновение линий фазы Ag_{1/2}TiTe₂, что соответствует переходу в однофазную область фазы Ag_{3/4}TiTe₂. Линии этой фазы остаются устойчивыми вплоть до самых высоких исследованных температур, подвергаясь лишь постепенному тепловому размытию.

В образце Ag_{0.65}TiTe₂ сверхструктурные линии, индицирующиеся в предположении сверхструктуры $2a_0 \times 2a_0 \times c_0$, наблюдаются уже при комнатной температуре. Тем не менее нагрев до 130°С приводит к структурному изменению, связанному с ослаблением рефлекса (002), окончательно исчезающего при 200°. Это может свидетельствовать о смене упорядочения с $2a_0 \times 2a_0 \times c_0$ на $2a_0 \times 2a_0 \times 2c_0$ при сохранении исходной пространственной группы *Р*3*m*1. По-видимому, такой переход связан с ориентационным упорядочением плоских сеток $2a_0 \times 2a_0 \times c_0$ в последовательности ABABAB, где А и В — один из четырех возможных наборов вакантных октаэдрических позиций, упорядоченных в мотиве $2a_0 \times 2a_0$. Эта же тенденция наблюдается для образцов Ag_{0.57}TiTe₂ выше 400°С и для Ag_{0.75}TiTe₂ в ограниченном интервале температур вблизи 100°С (рис. 3).

Рис. 3. Фрагменты экспериментальных дифрактограмм, полученных при характерных температурах для образцов $Ag_x TiTe_2$. $a - Ag_{0.3}TiTe_2$, $b - Ag_{0.55}TiTe_2$, $c - Ag_{0.57}TiTe_2$, $d - Ag_{0.65}TiTe_2$, $e - Ag_{0.75}TiTe_2$. Стрелками отмечено положение дополнительных рефлексов, связанных с упорядочением серебра вблизи температуры коллапса поляронной зоны. Дифрактограммы *a*, *b* получены в Cu K_{α} -излучении, c - в Cu K_{α_1} -излучении, d, e - в синхротронном излучении с длиной волны $\lambda = 1.9373$ Å.

Рис. 4. Температурная зависимость объема элементарной ячейки $Ag_x TiTe_2$ без учета кратного увеличения параметров из-за упорядочения серебра. $a - Ag_{0.3}TiTe_2$, $b - Ag_{0.55}TiTe_2$, $c - Ag_{0.57}TiTe_2$, $d - Ag_{0.65}TiTe_2$ (1) и $Ag_{0.75}TiTe_2$ (2).

На температурной зависимости объема элементарной ячейки образцов с содержанием серебра x = 0.65и 0.75 наблюдается небольшой минимум при температуре $T \sim 120^{\circ}$ С, соответствующей возникновению упорядочения с удвоением периода c. Для образца с x = 0.57выше температуры упорядочения наблюдается уменьшение объема с ростом температуры. Образец с x = 0.55демонстрирует минимум на температурной зависимости объема элементарной ячейки при T ~ 170°C. Поскольку образование поляронов в интеркалатных материалах на основе дихалькогенидов титана обычно сопровождается сжатием решетки, совпадение температур, соответствующих минимуму объема и возникновению упорядочения, подтверждает предположение о поляронной природе последнего. Отсутствие аномалий такого рода на аналогичных зависимостях для образца с меньшим содержанием серебра (x = 0.33) может быть связано с распадом на фазы, отличающиеся содержанием серебра, что приводит к большой ширине рентгеновских линий и существенно ухудшает точность определения параметров.

Таким образом, экспериментальные данные о температурной эволюции структуры $Ag_x TiTe_2$ находятся в хорошем согласии с результатами электрохимического исследования высокотемпературной части фазовой диаграммы этого материала [5].

3 Физика твердого тела, 2001, том 43, вып. 4

Близость температуры упорядочения и минимума на температурной зависимости объема элементарной ячейки к температуре обнаруженного в [3] перехода металл-полупроводник, при котором материал приобретает полупроводниковые свойства при нагреве, позволяет предположить единую причину этих переходов. А совпадение высокотемпературных частей фазовых диаграмм, полученных электрохимически и рентгенографически, при существенных различиях низкотемпературных частей позволяет связать этот переход с коллапсом поляронной зоны. Тогда упорядочение можно связать с локализацией электронов на центрах Ti-Ag-Ti и обусловленным ею усилением кулоновского отталкивания между ними. Существование упорядоченного состояния в относительно узком температурном интервале при малых концентрациях серебра (Ag_{0.3}TiTe₂) хорошо согласуется с этим предположением, поскольку отклонение как в сторону увеличения температуры, так и понижения ее относительно точки коллапса поляронной зоны приводит к уширению поляронной зоны и уменьшению степени локализации носителей заряда. Следует отметить, что для материалов с $E_d < E_F$ электронный вклад в общую энтропию материала при коллапсе поляронной зоны становится положительным, стабилизируя упорядоченное состояние [2]. Таким образом, растущая с увеличением

концентрации серебра устойчивость упорядоченного состояния может быть объяснена как изменением вклада электронной подсистемы в общие термодинамические функции материала, так и увеличением интенсивности обычного ион-ионного взаимодействия. Для Ago 55 TiTe2 и Ag_{0.57}TiTe₂ ($E_F \approx E_d$) вклад электронной подсистемы в общие термодинамические функции близок к нулю [2]. Это позволяет объяснить возникновение упорядочения при нагреве только усилением кулоновского отталкивания между центрами Ti-Ag-Ti вследствие локализации электронов, тогда как остальные структурные переходы происходят в соответствии с высокотемпературной фазовой диаграммой и могут быть объяснены в рамках чисто ионной модели. Для образцов с составами, лежащими в пределах области гомогенности фазы Ag_{3/4}TiTe₂, упорядочение при комнатной температуре может быть связано с обычным взаимодействием между интеркалированными ионами серебра. Это объясняет его устойчивость во всем исследованном температурном интервале. Однако в области перехода металл-полупроводник, связываемого с коллапсом поляронной зоны, наблюдаются аномалия объема в виде минимума на его температурной зависимости и возникновение дополнительного упорядочения в направлении нормали к базисной плоскости. Этот эффект, по-видимому, должен быть связан с усилением кулоновского отталкивания между центрами локализации электронов Ti-Ag-Ti (поляронами).

Следует отметить, что сжатие решетки в направлении нормали к базисной плоскости, наблюдаемое уже при комнатной температуре (рис. 2), заставляет признать, что даже в самой низкотемпературной части фазовая диаграмма Ag_x TiTe₂ не является результатом чисто ионных взаимодействий, а носит следы слабой локализации электронов проводимости.

Таким образом, увеличение кулоновского отталкивания вблизи температуры коллапса поляронной зоны может приводить не только к ограничению возможности существования однофазного состояния условием E_d < E_F, но и к упорядочению возникающих при этом поляронов и, следовательно, появлению дополнительной щели в плотности состояний. В случае Ag_rTiTe₂ при температуре упорядочения наблюдается переход к активационной проводимости с одновременным увеличением величины и сменой знака коэффициента Зеебека [3], что может свидетельствовать об открытии щели на уровне Ферми. С другой стороны, разница во временах релаксации электронных свойств и распада упорядоченного состояния при охлаждении до комнатной температуры очень велика: если проводимость и термоэдс принимают равновесные значения через несколько часов выдержки при комнатной температуре, то полного распада упорядочения приходится ждать несколько суток. Таким образом, вопрос о природе щели остается открытым и требует дальнейших исследований.

Один из авторов (С.Г.Т.) благодарит Королевское общество Великобритании за финансовую помощь, благодаря которой оказалось возможным провести высокотемпературную рентгенографию с высоким разрешением в университете г. Сент-Эндрюс. Авторы считают своей приятной обязанностью выразить благодарность J.T.S. Irvine и Р. Lightfoot (Sent-Andrews University) за помощь в проведении рентгенографии и Б.П. Толочко за помощь в эксперименте с использованием синхротронного излучения в ИЯФ СО РАН.

Список литературы

- A. Titov, S. Titova, M. Neumann, V. Pleschov, Yu. Yarmoshenko, L. Krasavin, A. Dolgoshein, A. Kuranov. Liq. Cryst. Mol. Cryst. **311**, 161 (1998).
- [2] А.Н. Титов, А.В. Долгошеин. ФТТ 42, 425 (2000).
- [3] А.Н. Титов. Неорг. материалы 33, 534 (1997).
- [4] A.S. Alexandrov, N.F. Mott. Polarons & Bipolarons. World Scientific, Singapore (1995). P. 191.
- [5] A.N. Titov, S.G. Titova. J. Alloys Comp. 256, 13 (1997).
- [6] А.Н. Титов. ФТТ 38, 3126 (1996).