Сверхпроводимость в системе $Ba_{1-x}La_xPbO_3$

© А.П. Менушенков, А.В. Цвященко^{*}, Д.В. Еременко, К.В. Клементьев, А.В. Кузнецов, В.Н. Трофимов^{**}, Л.Н. Фомичева^{*}

Московский государственный инженерно-физический институт,

115409 Москва, Россия

*Институт физики высоких давлений им. Л.Ф. Верещагина Российской академии наук,

142092 Троицк, Московская обл., Россия

**Объединенный институт ядерных исследований,

141980 Дубна, Московская обл., Россия

E-mail: menushen@htsc.mephi.ru

(Поступила в Редакцию 12 июля 2000 г. В окончательной редакции 2 октября 2000 г.)

> В рамках эмпирической модели взаимосвязи локальной кристаллической и электронной структуры перовскитных систем $Ba_{1-x}K_xBiO_3$ и $BaPb_{1-x}Bi_xO_3$, построенной на основе результатов EXAFS спектроскопии указанных соединений, сделан вывод о возможности сверхпроводимости в системе $Ba_{1-x}La_xPbO_3$. Обнаружено, что в многофазном соединении $Ba_{1-x}La_xPbO_3$, синтезированном при давлении 6.7 GPa, присутствует сверхпроводящая фаза с критической температурой $T_c \simeq 11$ K.

> Работа поддержана Российским фондом фундаментальных исследований (гранты № 99-02-17343 и 99-02-17897) и программой Миннауки РФ "Фундаментальные аспекты физики конденсированного состояния" (грант № 99010).

Соединение BaBiO₃ относится к классу кубических перовскитов с общей формулой АВО3, основу которых составляют октаэдрические комплексы ВО₆. BaBiO₃ является диэлектриком, а при замещении части ионов висмута в позиции В на свинец или ионов бария в позиции А на калий или рубидий образуются твердые растворы замещения Ba_{1-x}K_xBiO₃ (BKBO) и BaPb_{1-x}Bi_xO₃ (ВРВО), в которых с ростом концентрации допирующей примеси наблюдается фазовый переход металлдиэлектрик. После фазового перехода указанные соединения становятся металлическими сверхпроводниками с $T_c \simeq 13$ К в ВаРb_{0.75}Вi_{0.25}O₃ [1] и $T_c \simeq 30$ К в Ва_{0.6}К_{0.4}ВіО₃ [2]. Для выявления механизмов влияния допирования по А- и В-позициям на свойства висмутатов в нормальном и сверхпроводящем состояниях были предприняты попытки синтеза новых сверхпроводников на основе ВаВіО₃, имевшие целью поиск соединений с более высокими критическими температурами [3]. При этом было обнаружено, что химические модификации, не образующиеся в нормальных условиях, успешно синтезируются при высоких давлениях. В результате была синтезирована новая сверхпроводящая фаза: (K_{1-x}Bi_x)BiO₃ с $T_c \simeq 10.2 \,\mathrm{K}$ при $x = 0.1 \,[3]$.

В отличие от слоистых высокотемпературных сверхпроводников твердые растворы на основе BaBiO₃ имеют слабоискаженную кубическую структуру. Они характеризуются изотропией физических свойств и отсутствием магнитных взаимодействий. Более простая структура 6s-2p валентной зоны висмутатов по сравнению с 3d-2p зоной высокотемпературных сверхпроводников и отсутствие резервуаров заряда вне BO₆ октаэдрических комплексов существенно облегчают анализ электронной структуры висмутатов. На основе такого анализа была предложена эмпирическая модель, увязывающая особенности локальной кристаллической и локальной электронной структуры висмутатов и объясняющая причину появления фазового перехода диэлектрик-металл и возникновения сверхпроводимости [4–6]. Далее в рамках данной модели сделан вывод о возможности возникновения сверхпроводимости в соединении $Ba_{1-x}La_xPbO_3$, не содержащем ионов висмута.

Исходное для перечисленных выше систем соединение ВаВіО₃ имеет моноклинно искаженную кубическую решетку. Данное искажение является комбинацией статического поворота BiO₆ октаэдров вокруг осей типа [110] — вращательное искажение — и чередования октаэдров большего и меньшего размеров — искажение "дыхательной" моды. Изначально неэквивалентность октаэдров связывалась с диспропорционированием валентности висмута $2\mathrm{Bi}^{4+}
ightarrow \mathrm{Bi}^{3+} + \mathrm{Bi}^{5+}$, вызывающим волну зарядовой плотности, приводящую к удвоению объема элементарной ячейки и появлению диэлектрической щели [7]. Допирование калием или свинцом уменьшает оба типа искажений и разрушает волну зарядовой плотности. Например, металлическая сверхпроводящая фаза $Ba_{1-x}K_xBiO_3$ при x > 0.37 имеет неискаженную кубическую структуру [8]. На основании данных рентгеноструктурного анализа и упругого рассеяния нейтронов [8,9] принято считать, что неэквивалентность валентных состояний висмута, характерная для BaBiO₃, исчезает при допировании, и в сверхпроводящей фазе ВКВО или ВРВО все ионы висмута находятся в одном состоянии. В результате утверждалось, что неэквивалентность состояний висмута обусловливает диэлектрические свойства ВаВіО₃ и не связана со сверхпроводимостью [10].

Отметим, что упомянутые выше методы дают картину структуры, усредненную по объему образца. Исследования структуры систем ВКВО-ВРВО локально чувствительным методом EXAFS и прецизионные измерения фотоэмиссионных спектров обнаружили, что неэквивалентность состояний висмута сохраняется и в сверхпроводящих составах ВКВО. Это экспериментально проявляется в виде сильно ангармонических колебаний ионов кислорода в двухъямном потенциале вдоль связей Bi–O–Bi [5,11] и расщеплении Bi 4f линий фотоэмиссионных спектров [12]. Поэтому на основе экспериментальных данных EXAFS была предложена новая модель электронной структуры и транспортных свойств висмутатов [4–6].

Было показано, что кристаллическая структура ВаВіО₃ описывается упорядоченным чередованием октаэдрических комплексов BiO_6 и BiL^2O_6 , где L^2 означает присутствие пары дырок в гибридизированной антисвязывающей 6sBiO2p_{σ*} орбитали комплекса. характеризуется Электронная структура BaBiO₃ системой локальных электронных и дырочных пар, разделенных энергетически диэлектрической щелью $2E_a = 0.48 \,\mathrm{eV}$. Пары разделены и пространственно, так как принадлежат различающимся комплексам: электронные — BiO₆, а дырочные — BiL²O₆. Свободных носителей заряда в системе нет, и проводимость обусловлена двухчастичным переносом заряда при динамическом обмене $BiL^2O_6 \leftrightarrow BiO_6$.

Замещение части ионов Ba^{2+} ионами K⁺ уменьшает число электронов и переводит часть комплексов BiO_6 в состояние BiL^2O_6 . С ростом числа BiL^2O_6 комплексов при их пространственном перекрытии создается непрерывный BiL^2O_6 кластер, в котором из свободных L^2 уровней образуется зона проводимости, поэтому происходит фазовый переход диэлектрик-металл. При этом диэлектрическая щель исчезает и локальные электронные пары с комплексов BiO_6 свободно перемещаются через BiL^2O_6 кластеры, обусловливая переход в сверхпроводящее состояние при $T < T_c$.

Полное замещение ионов Ва на ионы К соответствует соединению KBiO₃, состоящему только из комплексов BiL²O₆, которое должно быть несверхпроводящим металлом, так как в нем отсутствуют комплексы BiO₆, содержащие электронные пары. Для появления сверхпроводимости необходимо создать пары, преобразовав часть комплексов BiL²O₆ в BiO₆. Это было недавно достигнуто при легировании KBiO₃ в позиции А трехвалентными ионами Bi³⁺ [3].

Соединение BaPbO₃ является электронным аналогом KBiO₃. Оно состоит из эквивалентных комплексов PbL²O₆ [4–6] и имеет металлические свойства. Сверхпроводимость отсутствует в BaPbO₃, но появляется при легировании висмутом в BaPb_{1-x}Bi_xO₃ и наблюдается в достаточно узком диапазоне допирования 0.05 < x < 0.35 [1]. Появление сверхпроводимости связано с появлением локальных электронных пар на BiO₆ комплексах. Электронная структура октаэдров PbL²O₆ с ионами свинца в центре идентична структуре BiL²O₆ комплексов. Поэтому металлические свойства BaPb_{1-x}Bi_xO₃ обусловлены наличием зоны проводимости из свободных L² уровней в непрерывном кластере,

состоящем как из PbL²O₆, так и из комплексов BiL²O₆, а сверхпроводимость объясняется когерентным переносом пар при динамическом обмене BiL²O₆ \leftrightarrow BiO₆ и PbL²O₆ \leftrightarrow BiO₆.

Из приведенного выше следует, что сверхпроводимость в BaPbO₃ можно получить путем замены части октаэдров PbL²O₆ на PbO₆ за счет электронного легирования при замещении части ионов Ba²⁺ трехвалентными ионами, так как такое легирование должно приводить к формированию локальных электронных пар в комплексах PbO₆. Мы попытались проверить данное предположение экспериментально.

Среди трехвалентных ионов La^{3+} имеет ионный радиус 1.17 Å, наиболее близкий к 1.49 Å для Ba^{2+} . Столь большая разность ионных радиусов препятствует образованию соединения $Ba_{1-x}La_xPbO_3$ при нормальном давлении. Наши неоднократные попытки получить соединение методом твердофазного синтеза в атмосфере кислорода или на воздухе закончились неудачно, что обусловило необходимость проведения синтеза под высоким давлением.

Образцы номинального состава $Ba_{0.9}La_{0.1}PbO_3$ синтезировались из оксидов BaO_2 , La_2O_3 , PbO и PbO₂ чистотой 99.9%. В аргоновой атмосфере стехиометрическая смесь хорошо перемещенных оксидов прессовалась и закладывалась в цилиндрическую платиновую ампулу объемом 90 mm³, которая затем монтировалась в тороидальную камеру высокого давления [13]. При давлении 6.7 GPa ампула за 12 min разогревалась до 1000°C, выдерживалась при данной температуре в течение 20 min и за несколько секунд охлаждалась до комнатной температуры. Синтезированная керамика имела черный цвет, а на свежем изломе наблюдался металлический блеск. Проведенный рентгеноструктурный анализ показал, что синтезировано многофазное соединение. Одна из фаз

Рис. 1. Температурная зависимость намагниченности. На вставке в увеличенном масштабе приведена зависимость вблизи критической температуры. Стрелкой помечена критическая температура свинца.

Рис. 2. Полевая зависимость намагниченности при гелиевой температуре. На вставках в увеличенном масштабе приведена зависимость в слабых и сильных полях. Стрелкой помечено критическое поле свинца.

соответствует перовскитной структуре с параметрами решетки, близкими к BaPbO₃. Идентификация остальных фаз не проводилась.

Намагниченность синтезированного соединения измерялась на магнитометре СКВИД [14]. Приведенная на рис. 1 температурная зависимость намагниченности свидетельствует о наличии в образце двух сверхпроводящих фаз. Фаза с бо́лышим объемом, который при T = 4.2 К не превышает 28%, имеет критическую температуру $T_c \simeq 7.2$ К, однако в малой доли образца, $\sim 1\%$, сверхпроводимость сохраняется вплоть до $T_c \simeq 11$ К.

Существование двух сверхпроводящих фаз с различающимися параметрами подтверждает и представленная на рис. 2 полевая зависимость намагниченности, измеренная при T = 4.2 К. В слабых полях $H \leq 520$ Ое наблюдается значительный полевой гистерезис, связанный с пиннингом потока в образце. В больших полях как сама намагниченность, так и ее гистерезис малы. При $H \gtrsim 5000$ Ое сверхпроводимость подавляется, намагниченность становится обратимой и линейно растет с полем. Наклон обратимой кривой намагничивания соответствует парамагнитной восприимчивости $\chi = 1.14 \cdot 10^{-3}$ cm³/mol.

Наличие в образце сверхпроводящей фазы с критической температурой, близкой к T_c металлического свинца, может быть связано с возможным восстановлением части свинца в химической реакции под высоким давлением. В пользу такого предположения говорит также тот факт, что гистерезис кривой намагничивания возникает в полях меньших критического поля свинца.

Очень малую величину объема сверхпроводящей фазы с $T_c \simeq 11$ К можно объяснить тем, что она, по-видимому, возникает лишь на границах зерен синтезируемой керамики, где вследствие напряженного состояния решетки

создаются более благоприятные условия для стабилизации фаз с большой разницей радиусов ионов, формирующих решетку. Можно надеяться, что оптимизация давления и температуры синтеза, режима охлаждения и состава шихты позволят увеличить объем сверхпроводящей фазы $Ba_{1-x}La_xPbO_3$ до величины, достаточной для идентификации ее стехиометрии и кристаллической структуры. В заключение необходимо подчеркнуть, что в системе Ba_La-O и Ba_Pb-O сверхпроводимость ранее не наблюдалась.

Список литературы

- A.W. Sleight, J.L. Gillson, P.E. Bierstedt. Solid State Commun. 17, 27 (1975).
- [2] R.J. Cava, B. Batlogg, J.J. Krajewski, R. Farrow, L.W. Rupp, jr., A.E. White, K. Short, W.F. Peck, T. Kometani. Nature 332, 814 (1988).
- [3] N.R. Khasanova, A. Yamamoto, S. Tajima, X.-J. Wu. Physica C305, 275 (1998).
- [4] А.П. Менушенков. Поверхность 3, 14 (1999); 12, 58 (1999).
- [5] A.P. Menushenkov, K.V. Klementev. J. Phys.: Condens. Matter. 12, 3767 (2000).
- [6] M.Yu. Kagan, A.P. Menushenkov, K.V. Klementev, A.V. Kuznetsov (to be published).
- [7] D.E. Cox, A.W. Sleight. Acta Crystallogr. B35, 1 (1989).
- [8] S. Pei, J.D. Jorgensen, B. Dabrowski, D.G. Hinks, D.R. Richards, A.W. Mitchell, J.M. Newsam, S.K. Sinha, D. Vaknin, A.J. Jacobson. Phys. Rev. B41, 4126 (1990).
- [9] J.P. Wignacourt, J.S. Swinnea, H. Steinfink, J.B. Goodenough. Appl. Phys. Lett. 53, 1753 (1988).
- [10] M. Shirai, N. Suzuki, K. Motizuki. J. Phys.: Condens. Matter. 2, 3553 (1990).
- [11] А.П. Менушенков, К.В. Клементьев, П.В. Конарев, А.А. Мешков. Письма в ЖЭТФ 67, 977 (1998).
- [12] M. Qvarford, V.G. Nazin, A.A. Zakharov, M.N. Mikheeva, J.N. Anderson, M.K.-J. Johansson, T. Rogelet, S. Söderholm, O. Tjernberg, H. Nylén, I. Lindau, R. Nyholm, U.O. Karlsson, S.N. Barilo, S.V. Shiryaev. Phys. Rev. B54, 6700 (1996).
- [13] L.G. Khvostantsev, L.F. Vereshchagin, A.P. Novikov. High Temp. High Press. 9, 637 (1977).
- [14] V.N. Trofimov. Cryogenics **32**, 513 (1992).