Симметричные ВТСП бикристаллические джозефсоновские переходы: зависимость электрофизических свойств от угла разориентации

© Ю.В. Кислинский, Е.А. Степанцов, З.Г. Иванов*, Т. Клаесон*

Институт кристаллографии Российской академии наук, 117333 Москва, Россия * Технологический университет Чалмерса, S-41296 Гётеборг, Швеция E-mail: mechan@ns.crys.ras.ru

(Поступила в Редакцию 24 августа 2000 г.)

Исследовалась зависимость электрофизических свойств переходов на симметричных бикристаллических границах в ВТСП-пленках от угла разориентации в диапазоне 8-45°. Переходы были получены выращиванием эпитаксиальных пленок YBa₂Cu₃O₇ на бикристаллических подложках Y-ZrO₂. Пропорциональное соотношение характерных напряжений и нормальных проводимостей переходов получено как следствие из зависимостей критических токов и нормальных сопротивлений от угла разориентации. Для объяснения результатов использована модель сверхпроводник-диэлектрик с уровнями дефектов в запрещенной зоне-сверхпроводник. Отклонения от пропорционального соотношения объясняются неоднородностью переходов. Сделаны оценки толщины эффективного диэлектрического слоя бикристаллического перехода и боровского радиуса электронов на дефектах.

Работа частично финансировалась Российским фондом фундаментальных исследований и программой ИНТАС Европейского союза.

Для высокотемпературной сверхпроводниковой электроники необходимы переходы Джозефсона с возможно большими критическими токами I_c и нормальными сопротивлениями R_n . Межзеренные границы в пленках YBa₂Cu₃O₇ (YBCO) на бикристаллах с малыми углами разориентации θ имеют высокое характерное напряжение ($V_c = I_c R_n$), но такие переходы неоднородны [1]. При углах θ около 30° границы однородны [2], но малы напряжения V_c . Связь между электрическими свойствами и структурой переходов исследовалась рядом научных групп. Толщина диэлектрика $d \approx 2$ nm рассчитана для $\theta = 32^\circ$ на Y–ZrO₂ по величинам емкости переходов [2].

Пропорциональность V_c и поверхностной проводимости g_n следует из модели прямого туннелирования пар через диэлектрик [3]. Соотношение $V_c \sim g_n^q$, где q = 1-1.5, подтверждено данными экспериментов [4]. Но отмечены и отклонения от этого соотношения [5]. Причины отклонений исследованы в данной работе. Разработана теория туннелирования куперовских пар по каналам из периодически расположенных дефектов в полупроводнике [6]. Эта теория тоже приводит к зависимости $V_c \sim g_n$ [7]. Туннелирование нормальных электронов по таким каналам описано в [8]. Нами сделаны оценки параметров для туннелирования электронов через межзеренную границу YBCO: боровского радиуса электронов на дефектах α_b и толщины d.

1. Экспериментальная часть

YBCO-пленки выращивались методом лазерного импульсного осаждения на бикристаллических подложках из Y–ZrO₂ (YSZ). Толщина пленок *t* была около 250 nm. Пленки выращивались так, что их главные оси С были перпендикулярны поверхности подложки и (110) YBCO || (100) YSZ, так же как было определено ранее в [9]. Межзеренная граница ҮВСО формировалась при росте пленки над границей в подложке. Методом фотолитографии и последующим ионным травлением были получены джозефсоновские переходы в виде ҮВСО-микромостиков, которые пересекают границу аналогично тому, как предлагалось в [10]. Их ширина *w* составляла 1-8 µm. Контактные площадки были изготовлены термическим испарением золота и ионным травлением. Таким образом, создавались бикристаллические переходы со следующими углами разориентации (в градусах): 8, 18, 26, 28, 34, 36 и 45. Эти значения равнялись соответственно двойной величине угла, который образовывали в ҮВСО-пленке направления (100) и (010) с межзеренной границей.

Вольт-амперные характеристики (IVC) измерялись четырехзондовым методом. Точность измерения I_c составляла около 20% из-за влияния магнитных полей. Значения R_n определялись по касательным к IVC с погрешностью около 2%. Поверхностные сопротивления ρ_n и проводимости g_n вычислялись как $\rho_n = 1/g_n = R_n wt$.

2. Результаты экспериментов

Вольт-амперные характеристики переходов соответствуют резистивно-шунтированной (RSJ) модели. IVC переходов, как правило, описываются формулой

$$i(v) = R_n^{-1} \sqrt{v^2 + (I_c R_n)^2} + I_{\text{ex}}.$$
 (1)

Рис. 1. Вольт-амперные характеристики (IVC) переходов шириной $w = 8 \,\mu$ m при 77 К. На вставке — IVC для переходов с $\theta = 8^{\circ}$ и $w = 6 \,\mu$ m при 4 К. Штриховые линии соответствуют расчету IVC по формуле (1).

Для IVC перехода с $\theta = 18^\circ$ и $w = 8 \,\mu m$ при 77 K методом наименьших квадратов получены следующие параметры: $R_n = 1.85 \Omega$, $I_c = 79 \mu A$, избыточный ток $I_{\rm ex} = 17 \,\mu {
m A}$ (рис. 1). IVC границы с $\theta = 34^{\circ}$ и $w = 8 \,\mu {
m m}$ при 77 К имеет малый ток $I_c \approx 8 \, \mu$ А, поэтому она заглажена термическим шумом. Характеристика перехода с $\theta = 8^{\circ}$ и $w = 6 \,\mu m$ при 4 K соответствует формуле (1) на участке $v \ge V_c$ (вставка на рис. 1). По этой формуле вычислены параметры $R_n = 0.52 \Omega$, $I_c = 4.30 \text{ mA}$, $I_{\rm ex} = 2.30 \, {\rm mA}$. Критический ток, измеренный по критерию 1 μ V, равен 4.05 mA. Характеристика отклоняется от RSJ-модели при $v < V_c$. Переход является "широким", поскольку соотношение между джозефсоновской глубиной проникновения λ_i и шириной w велико $(w/\lambda_i \approx 7)$. Магнитное поле тока питания вызывает движение вихрей тока вдоль границы, что и приводит к искажению формы вольт-амперной характеристики.

Указанная IVC перехода с $\theta = 8^{\circ}$ изменяется под действием CBЧ-облучения в соответствии с RSJ-моделью. На рис. 2 показаны зависимости положений краев трех первых ступеней Шапиро от относительного CBЧ-тока через переход: $i_w = I_{rf}/I_c(0)$, где I_{rf} — амплитуда внешнего CBЧ-тока, а $I_c(0)$ — критический ток в отсутствие CBЧ. Зависимость тока, соответствующего верхнему краю ступени с номером n, от тока i_w обозначена как $I_n^+(i_w)/I_c(0) = i_n^+$, зависимость тока нижнего края — как $I_n^-(i_w)/I_c(0) = i_n^-$, критические токи при разных токах CBЧ — как $I_c(i_w)/I_c(0) = i_0$. Введем относительную частоту $\omega \approx V_1/V_c \approx 10^{-2}$, где $V_1 = 24.3 \,\mu$ V — напряжение первой ступени Шапиро, а $V_c = 2.25$ mV. Для RSJ-характеристик при условиях $\omega \ll 1$ и $i_w \ll 1/\omega$ верны формулы [11]

$$i_n^+ = 1 - i_w + (2n+1)\omega\sqrt{i_w},$$
 (2)

$$i_n^- = 1 - i_w + (2n - 1)\omega\sqrt{i_w}.$$
 (3)

Параметр $\omega = 0.037$ найден численно. При $i_w \leq 1$ токи на границах ступеней убывают с ростом амплитуды СВЧ в соответствии с формулами (2) и (3) (рис. 2, *a*).

Параметры формулы (1) использованы для сравнения переходов с различными углами θ (табл. 1). Запись вида 6 + 6 в графе *w* означает СКВИД из двух мостиков по 6 μ m шириной. Токи I_c убывают на два порядка с увеличением θ , а сопротивления R_n возрастают на порядок. Доля избыточного тока $I_{\rm ex}/I_c$ убывает с ростом угла θ .

Для переходов с $\theta \leq 36^{\circ}$ температурная зависимость R_n не обнаружена. В случае $\theta = 45^{\circ}$ нормальная проводимость *G* при T > 40 К растет с температурой (рис. 3). Относительное изменение проводимо-

Рис. 2. Зависимость токов на границах ступеней Шапиро от СВЧ-тока $i_w = I_{rf}/I_c(0)$ в диапазонах $i_w \leq 1$ (*a*) и $i_w \geq 1$ (*b*) для $\theta = 8^{\circ}$ при T = 4 К. Критические токи обозначены квадратами, границы первой ступени — треугольниками, второй — кружками, третьей — ромбами. Верхние границы показаны темными символами, нижние — светлыми. Сплошные линии — расчеты для i_0 , i_1^+ , i_2^+ и i_3^+ .

θ.	w, μm	$T = 77 \mathrm{K}$			$T = 4 \mathrm{K}$		
deg.		R_n, Ω	$I_c, \mu A$	$I_{\rm ex}/I_c$	$egin{array}{c} R_n,\ \Omega\end{array}$	$I_c,$ mA	$I_{\rm ex}/I_c$
8	6	0.55	440	0.8	0.52	4.3	0.54
8	3	1.94	57	0.7	1.66	1.66	0.7
18	8	1.85	79	0.22	1.95	1.4	0.40
18	4	4.96	20	0.45	5.03	0.35	0.59
26	6 + 6	0.83	163	0.60	0.76	3.42	0.7
26	4	3.26	53	0.55	—	—	—
28	6 + 6	0.83	392	0.42	0.75	4.43	0.12
28	4	2.92	121	0.34	2.63	1.08	0.41
34	6 + 6	_	—	_	2.05	0.36	0.26
34	8	3.66	8	1	3.95	0.24	0.26
36	6 + 6	1.29	9	0.5	1.46	0.50	0.30
36	8	1.74	23	0.4	1.89	0.34	0.27
45	4	—	—	—	17.3	0.026	0.12
45	4 + 4	—	—	—	8.69	0.043	0.11

Таблица 1. Электрофизические параметры симметричных джозефсоновских переходов

сти $G(T)/G_1$ можно представить в виде [8]

$$\frac{G(T)}{G_1} = 1 + \frac{G_2}{G_1} \left(T - 35\right)^m.$$
 (4)

Здесь G_1 — среднее значение проводимости при $T \leq 30$ К. Два параметра ($m = 1.1 \pm 0.5$ и $G_2/G_1 \approx 2 \cdot 10^{-3}$) вычислены методом наименьших квадратов. Среднее квадратичное отклонение G_1 (σ_{G1}) составляет 2%, что существенно меньше, чем изменение проводимости с температурой (рис. 3).

Температурная зависимость V_c и избыточного напряжения $V_{\rm ex} = I_{\rm ex}R_n$ для перехода с углом $\theta = 18^\circ$ показана на рис. 4. При $T \ge 40$ К для V_c использована формула

$$V_c = V_0 (1 - T/T_c)^M,$$
 (5)

где T_c — критическая температура YBCO для данного образца. Параметры M и V_0 найдены по экспериментальным данным численно. Для переходов с $\theta = 8, 18, 34, 45^{\circ}$ получены величины M = 1.8, 1.9, 1.8, 2.0 и $V_0 = 7, 3.8, 0.72, 0.64$ mV соответственно. При $T \leq T_c$ температурная зависимость V_c близка к $(1 - T/T_c)^2$. При $T \leq T_c/2$ и $\theta < 30^{\circ}$ характерное напряжение уменьшается с температурой по линейному закону.

Убывание плотностей критического тока j_c и возрастание сопротивлений ρ_n с увеличением угла разориентации можно представить в виде экспонент (рис. 5)

$$j_c(\theta, T) = j_c(0, T) \exp(-\beta \theta), \qquad (6)$$

$$\rho_n(\theta, T) = \rho_n(0, T) \exp(\gamma \theta). \tag{7}$$

Коэффициенты β и γ найдены методом наименыших квадратов. Соотношение $\beta/\gamma \approx 2$ выполняется в широком интервале температур. Табл. 2 показывает, что разности между величинами 2γ и β не превосходят суммы их

Рис. 3. Зависимость нормальной проводимости от температуры для переходов с $\theta = 45^{\circ}$. Данные для переходов с $w = 8 \,\mu\text{m}$ (светлые символы) и $4 \,\mu\text{m}$ (темные). Сплошная линия — расчет по формуле (4), штриховые — границы интервала $G_1 \pm \sigma_{G1}$.

Рис. 4. Зависимости характерного V_c и избыточного V_{ex} напряжения от температуры для перехода с $\theta = 18^\circ$, $w = 8 \,\mu$ m. Кружки — значения V_c , ромбы — V_{ex} , сплошная линия — расчет по формуле (5), штриховая — линейная зависимость. Стрелкой указана величина T_c пленки YBCO. На вставке — зависимость $V_c - V_{ex}$ от угла θ при 4 К. Прямая линия — функция $\exp(-\delta\theta)$.

Рис. 5. Плотности тока j_c (кружки) и сопротивления ρ_n (треугольники) при различных разориентациях θ , T = 50 К. Сплошная линия — экспонента $\rho_n(\theta)$, штриховая — $j_c(0)$.

T, K	β , deg. ⁻¹	σ_eta	$\gamma, { m deg.}^{-1}$	σ_γ
4	0.120	0.013	0.061	0.008
10	0.118	0.020	0.061	0.012
20	0.118	0.025	0.062	0.014
30	0.125	0.022	0.060	0.012
40	0.129	0.018	0.062	0.011
50	0.139	0.013	0.060	0.007

0.019

0.058

0.011

Таблица 2. Коэффициенты β и γ , а также их средние квадратичные отклонения σ_{β} и σ_{γ} при различных температурах

средних квадратичных отклонений при температурах от 4 до 60 К.

Разности напряжений $V_c - V_{\rm ex}$ убывают с увеличением угла θ (вставка на рис. 4). Мы аппроксимировали это убывание при 4 К экспонентой: $V_c - V_{\rm ex} = \exp(-\delta \theta)$. Коэффициент $\delta = 0.074 \pm 0.014$ близок к γ — коэффициенту возрастания ρ_n .

3. Обсуждение результатов

К настоящему времени для низкотемпературных сверхпроводников хорошо отработаны методики получения джозефсоновских переходов на основе трехслойных структур, состоящих из элементов тонких пленок низкотемпературных сверхпроводников (S), разделенных слоем изолятора (I) в качестве барьера для туннелирования электронных пар. Их электрофизические характеристики детально изучены, и на основании этого разработаны физические модели, объясняющие механизм функционирования таких переходов. В области высокотемпературной сверхпроводимости бикристаллические джозефсоновские переходы создаются на основе иных принципов и обладают иным строением (например, у них нет барьерного слоя), но их электрофизические характеристики имеют большое сходство с аналогичными характеристиками, присущими, например, SIS низкотемпературным переходам. На основании этого в качестве первого приближения представляется оправданным рассмотрение бикристаллического перехода как SIS-структуры, содержащей диэлектрический барьерный слой некоторой эффективной толщины d.

Результаты СВЧ-измерений на переходах с разориентаций 8° при больших внешних СВЧ-токах могут быть объяснены в рамках RSJ-модели. При $i_w \gtrsim 1$ величины ступеней осциллируют: четные ступени имеют минимальные амплитуды при тех же значениях i_w , при которых наблюдаются минимумы критического тока; минимумы амплитуд нечетных ступеней совпадают с максимумами i_0 (рис. 2, b). При одном и том же СВЧ-токе $i_w(r)$ возникает минимум критического тока с номером r($r \ge 0$), и функция i_n^+ для ступени с номером n = r достигает нуля. Из (2) получим эти значения тока i_w

$$i_{w,0}(r) = 1 + (2r+1)\omega \tag{8}$$

в приближении $\omega(r + 1) \ll 1$. Формула (8) была использована для приближенного вычисления частоты ω в разделе 2 по экспериментальным данным $i_0(i_w)$. Введем параметры $k_n = i_{w,n}(1)/i_{w,n}(0) - 1$, где $i_{w,n}(r)$ — величина относительного СВЧ-тока, при котором амплитуда *n*-й ступени *r*-й раз обращается в нуль [11]. Из данных эксперимента были получены значения $k_0 \approx 0.0866$, $k_1 \approx k_2 \approx k_3 \approx 0.0715$. Из (8) следует, что

$$\omega = \frac{k_n}{2 - k_n(n+1)}.\tag{9}$$

Для вывода этого соотношения мы использовали качественную картину осцилляций, которая приведена на рис. 2, *b* и в [11]. Формула (9) выполняется при $\omega(n + 1) \ll 1$. Частоты, вычисленные из осцилляций критического тока и первых трех ступеней Шапиро, близки по величине: $\omega(k_0) \approx 0.045$, $\omega(k_1) \approx 0.038$, $\omega(k_2) \approx 0.040$, $\omega(k_3) \approx 0.042$.

Амплитуды ступеней и критический ток имеют практически нулевые минимумы. Это означает, что соотношение тока и фазы близко к $I = I_c \sin \varphi$ [12]. Если бы границы с $\theta = 8^{\circ}$ имели сверхпроводящие закоротки SS'S, то толщина слоя S' была бы порядка 1 nm, а температура измерений (4К) была бы существенно ниже критической температуры для S'. Например, монокристаллы $YBa_2Cu_3O_{6.5}$ имеют $T_c \approx 30-40$ К. Соотношение тока и фазы в этом случае сильно отличается от синусоидального [13]. Признаков SS'S-закороток не обнаружено и при других углах разориентации. Переходы с различными углами в имели общие свойства: амплитуды ступеней и критические токи осциллировали при *i_w* > 1; зависимости $V_c(T)$ были близки к квадратичным вблизи T_c ; нормальные сопротивления не изменялись с температурой при $\theta \leq 36^{\circ}$. Мы предположили, что *I*-слои в переходах с различными углами в имеют качественно одинаковые зонные диаграммы, а толщина слоев увеличивается с ростом θ .

Согласно модели SIS [13], куперовские пары туннелируют через слой диэлектрика толщиной *d*. Критический ток убывает с ростом *d* по экспоненте

$$j_c \propto n_S \exp(-2kd), \quad k = \sqrt{2mE_b\hbar^{-2}},$$
 (10)

где n_S — плотность состояний в сверхпроводнике, $E_b \approx 1 \text{ eV}$ — высота барьера, k — константа убывания волновой функции пар в диэлектрике. Типичные значения концентрации дефектов в диэлектрике составляют $n_L \approx 10^{20} - 10^{21} \text{ cm}^{-3}$. Дефекты создают уровни в запрещенной зоне. Для одиночных электронов туннельная проводимость через дефекты, отстоящие на d/2 от обоих сверхпроводников, максимальна. Нормальный ток $j_n \propto n_S n_L \exp(-kd)$, а сопротивление $\rho_n \sim 1/j_n$. Тогда

$$\rho_n \propto n_S^{-1} n_L^{-1} \exp(kd). \tag{11}$$

60

0.137

Рис. 6. Соотношение между V_c и сопротивлениями ρ_n . Кружки — данные для переходов с углами $\theta > 8^\circ$, квадраты — для переходов с $\theta = 8^\circ$. Сплошная линия — зависимость $V_c = c/\rho_n$ для границ с $\theta > 8^\circ$.

Рис. 7. Зависимость $I_c(H)/\max(I_c)$ для перехода с $\theta = 8^\circ$, $w = 6 \,\mu$ m при 77 К (темные кружки). Графики $I_c(H)/\max(I_c)$ для переходов с $\theta = 32^\circ$, $w = 4 \,\mu$ m при 4 К показаны на вставке: данные для образца *A* (светлые кружки), для образца *B* (сплошная линия).

Пары разрушаются силами кулоновского отталкивания в диэлектрике, поэтому ширина барьера для них вдвое больше, чем для электронов, и отношение $\beta/\gamma \approx 2$.

Пропорциональность напряжений V_c величинам ρ_n^{-1} — следствие этого отношения. Перемножив (10) на (11) и предположив, что n_L слабо меняется с углом θ , получим

$$V_c = j_c \rho_n \propto \frac{\exp(-kd)}{n_L} \propto \frac{1}{n_S n_L \rho_n}.$$
 (12)

Результаты измерений при 4К показаны на рис. 6. Зависимость напряжения V_c от ρ_n мы искали в виде $V_c = c/\rho_n^q$. Методом наименьших квадратов были вычислены показатель $q = 1.0 \pm 0.2$ и коэффициент $c = 7.7 \pm 1.5$ для V_c (mV) и ρ_n ($10^{-8} \Omega \cdot cm^2$).

Переходы с $\theta = 8^{\circ}$ имеют характерные напряжения значительно меньшие, чем следует из зависимости $V_c = c/\rho_n$ (рис. 6). В нашем случае эти отклонения связаны с неоднородным распределением j_c по ширине перехода.

Зависимости Іс от магнитного поля Н измерялись на переходах с разориентаций 8° и ширинами w = 1, 3,6 μ т при 77 К (рис. 7). Минимумы на графиках $I_c(H)$ не обнаружены вплоть до полей 46 mT. Асимметричные границы с разориентацией 32° по типу 0.32 с ширинами $w = 2, 4, 8 \,\mu m$ на образце A имели фраунгоферовские зависимости $I_c(H)$ при 4K; полуширины главного максимума составили 5.1, 1.0, 0.21 mT соответственно (вставка на рис. 7). Переходы образца В на подложке с той же разориентацией, но в пленках ҮВСО другого качества не имели максимума двойной ширины. При одинаковой ширине мостиков среднее расстояние между минимумами на $I_c(H)$ для переходов образца В близко к Но переходов образца А (вставка на рис. 7). Период по полю более 46 mT означает, что границы с $\theta = 8^{\circ}$ имеют узкие участки с повышенной плотность тока j_c филаменты. Оценим ширину филаментов w_f сверху. Согласно [14], этот период зависит от ширины мостика как $H_0 = c_0 \Phi_0 / w^2$, где $\Phi_0 = 2.07 \cdot 10^{-15} \,\mathrm{Wb}$ — квант магнитного потока, а *w* измеряется в m. Константа $c_0 = 8.7$ найдена численно по данным $H_0(w)$ для образца А. Поэтому

$$w_f \le \sqrt{\frac{c_0 \Phi_0}{H_0}} = 0.63 \,\mu \mathrm{m.}$$
 (13)

Сравним параметры пяти однородных переходов на образце *A* и пяти неоднородных на образце *B*. При 4 К получены средние значения $j_{cA} = (3.0 \pm 0.8) \cdot 10^3$ A/cm², $\rho_{nA} = (34.7 \pm 5.6) \cdot 10^{-8} \Omega \cdot \text{cm}^2$ и $j_{cB} = (3.5 \pm 1.9) \times \times 10^3$ A/cm², $\rho_{nB} = (17.5 \pm 4.7) \cdot 10^{-8} \Omega \cdot \text{cm}^2$. Для всех величин указана погрешность $\pm \sigma$. На подложках одной разориентации неоднородные переходы имели те же критические токи и вдвое меньшие нормальные сопротивления по сравнению с однородными переходами. Для разориентации 8° наблюдаются такие же отклонения в сторону меньших напряжений $j_c \rho_n$ и бо́льших проводимостей $1/\rho_n$. Для проверки зависимости $V_c(\rho_n)$ следует использовать образцы с фраунгоферовскими картинами $I_c(H)$. Они должны наблюдаться на переходах субмикронной ширины.

Сопротивления R_n не зависят от температуры, если нормальные электроны туннелируют через один дефект [8]. Этот процесс вносит вклад G_1 в проводимость переходов с разориентацией $\theta = 45^{\circ}$. Туннелирование через канал из нескольких дефектов требует термической активации, поскольку уровни дефектов имеют различные энергии. Проводимость через два уровня пропорциональна $T^{3/4}$, а через три уровня — $T^{5/2}$ [15]. Экспериментальная зависимость $G(T) = G_1 + G_2 T^{1.1}$ указывает на наличие каналов проводимости как через один, так и через два уровня.

Отсюда может быть оценен боровский радиус электрона на дефекте α_b . Эта величина служит масштабом экспоненциального убывания G с толщиной диэлектрика: $G_1 \propto \exp(-d/\alpha_b)$. Согласно [8], наличие каналов проводимости через два уровня и отсутствие каналов через три уровня означает, что толщина $d \approx n^3 \alpha_b = 8 \alpha_b$, где n = 2. Ширину барьера для границы с $\theta = 45^{\circ} (d_{45})$ и $ho_n \approx 1.7 \cdot 10^{-7} \,\Omega \,\cdot\, \mathrm{cm}^2$ можно оценить по толщине диэлектрика в переходах образца A (d₃₂). Эти переходы имели $\rho_n \approx 3 \cdot 10^{-7} \,\Omega \cdot \mathrm{cm}^2$ и существенный гистерезис: отношение $I_c/I_{\text{cutoff}} \approx 0.9$, где I_c и I_{cutoff} — максимальное и минимальное значения критического тока. Отсюда параметр Маккамбера $\beta_c \approx 1.3$ [16]. Из определения этого параметра получим емкость перехода $C = \beta_c \hbar/(2eI_c R_n^2)$. Переходы на подложке YSZ являются плоскими конденсаторами, поскольку $w, t \gg d$. Следовательно,

$$d = \varepsilon \, \frac{\varepsilon_0 w t}{C},\tag{14}$$

где $\varepsilon \approx 4-5$ — диэлектрическая проницаемость YBCO с дефицитом кислорода [17]. Для переходов с углом 32° мы получили удельную емкость 15 fF/ μ m², отношение $d/\varepsilon = 0.58$ nm и толщину $d_{32} = 2.3-2.9$ nm. Поскольку $\ln(\rho_{32}/\rho_{45}) \approx 0.6$, то $d_{32} \approx d_{45} + 0.6\alpha_b \approx 8.6\alpha_b$ и $\alpha_b \approx 0.27-0.34$ nm.

Описания транспорта нормальных электронов моделями Глазмана–Матвеева [8] и Халбриттера [3] приводят к одинаковым результатам. Зависимости ρ_n от толщины dв этих моделях переходят друг в друга, если положить $k = \alpha_b^{-1}$. Наша оценка $\alpha_b^{-1} \approx 3 \text{ nm}^{-1}$ по порядку величины совпадает с константой $k = 7 \text{ nm}^{-1}$, вычисленной в [3].

Таким образом, характерные напряжения зависят от температуры квадратично при $T \lesssim T_c$. Нормальные сопротивления границ с углами $8 \leqslant \theta \leqslant 36^\circ$ не зависят от температуры. Нормальные проводимости границ с $\theta = 45^\circ$ возрастают с температурой на 10%.

Сопротивления R_n увеличиваются с углом θ как $\exp(\gamma\theta)$. Критические токи падают как $\exp(-2\gamma\theta)$ с увеличением разориентации. Характерные напряжения однородных переходов обратно пропорциональны нормальным поверхностным сопротивлениям. Данные $V_c(1/\rho_n)$ для переходов с неоднородным распределением j_c по ширине отклоняются в сторону меньших V_c и бо́льших нормальных проводимостей от этой зависимости. Боровские радиусы электронов на дефектах внутри межзеренных границ приближенно равны 0.3 nm.

УВСО-переходы на симметричных бикристаллах имеют характерные напряжения до 0.3 mV при 77 K и до 3 mV при 4 K. Сопротивления ρ_n достигают 1.7 · 10⁻⁷ Ω · cm².

Авторы благодарны К.И. Константиняну, О.П. Кошельцу, Г.А. Овсянникову, В. Роддатису и А.Я Цаленчуку за полезные обсуждения.

Список литературы

- [1] J.A. Alarco, E. Olsson. Phys. Rev. **B52**, 18, 13625 (1995).
- [2] D. Winkler, Y.M. Zhang, P.A. Nilsson, E.A. Stepantsov, T. Claeson. Phys. Rev. Lett. 72, 8, 1260 (1994).
- [3] J. Halbritter. Phys. Rev. B48, 13, 9735 (1993).
- [4] R. Gross, B. Mayer. Physica C180, 235 (1991).
- [5] H. Hilgenkamp, J. Manhart. IEEE Trans. Appl. Supercond. 9, 2, 3405 (1999).
- [6] Л.Г. Асламазов, М.В. Фистуль. ЖЭТФ 86, 4, 1516 (1984).
- [7] И.А. Девятов, М.Ю. Куприянов. Письма в ЖЭТФ 59, 3, 187 (1994).
- [8] Л.И. Глазман, К.А. Матвеев. ЖЭТФ 94, 6, 332 (1988).
- [9] G. Brorsson, E. Olsson, Z.G. Ivanov, E.A. Stepantsov, J.A. Alarco, Yu. Boikov, T. Claeson, P. Berastegui, V. Langer, M. Lofgren. J. Appl. Phys. 75, 12, 7958 (1994).
- [10] P.A. Nilsson, Z.G. Ivanov, H.K. Olsson, D. Winkler, T. Claeson, E.A. Stepantsov, A.Ya. Tzalenchuk. J. Appl. Phys. 75, 12, 7972 (1994).
- [11] К.К. Лихарев. Введение в динамику джозефсоновских переходов. Наука, М. (1985). С. 193.
- [12] A.N. Vystavkin, V.N. Gubankov, L.S. Kuzmin, K.K. Likharev, V.V. Migulin, V.K. Semenov. Rev. Phys. Appl. 9, 79 (1974).
- [13] K.K. Likharev. Rev. Mod. Phys. 51, 1, 101 (1979).
- [14] P.A. Rosenthal, M.R. Beasley, K. Char, M.S. Colclough, G. Zaharchuk. Appl. Phys. Lett. 59, 26, 3482 (1991).
- [15] И.И. Венгрус, М.Ю. Куприянов, О.В. Снигирев, А.Г. Маресов, С.И. Красносвободцев. Письма в ЖЭТФ 60, 5, 372 (1994).
- [16] D.E. McCamber. J. Appl. Phys. 39, 7, 3113 (1968).
- [17] J. Humlicek, J. Kircher, H.-U. Habermeier, M. Carbona, A. Roseler. Physica C190, 383 (1992).