Экситонные характеристики монокристаллов $TI_{1-x}Cu_xInS_2$

© С.Н. Мустафаева, Э.М. Керимова, Н.З. Гасанов

Институт физики Академии наук Азербайджана, 370143 Баку, Азербайджан

(Поступила в Редакцию 25 июля 2000 г.)

На основании результатов экспериментальных исследований интепретированы спектры поглощения монокристалов $Tl_{1-x}Cu_xInS_2$ (x = 0; 0.005; 0.01; 0.015), установлен прямой разрешенный тип межзонного перехода, определены ширина запрещенной зоны, энергия связи, коэффициент температурного сдвига, боровский радиус и приведенная эффективная масса экситона.

Изучение физических свойств соединений типа $TlMC_2^{VI}$ (M — In, Ga; C — S, Se, Te) и твердых растворов на их основе имеет важное практическое значение для установления закономерностей свойство-состав и управления их оптическими свойствами.

Согласно кристаллографическим данным, слоистые монокристаллы TIInS₂ описываются пространственной группой $C_{2h}^6 - C2/c$. В элементарной ячейке содержится 16 формульных единиц TIInS₂, в примитивной ячейке Z = 8 [1]. В [2] было показано, что фундаментальный край поглощения кристаллов TIInS₂ соответствует энергии 2.512 eV при 77 K и 2.363 eV при 300 K. В спектрах поглощения монокристаллов TIInS₂ при 10 K были обнаружены два экситонных пика с энергиями 2.58 и 2.87 eV [3]. В свою очередь известно [4], что кристаллы CuInS₂ обладают высоким коэффициентом поглощения ($\alpha \ge 10^4$ cm⁻¹) и прямыми межзонными переходами, что делает их перспективным материалом для изготовления фотопреобразователей.

Представлялось интересным изучение системы $TlInS_2$ —CuInS₂, а именно влияния частичного замещения ионов таллия ионами меди в слоистых монокристаллах $TlInS_2$ на их экситонные характеристики, что и явилось целью настоящей работы.

Для определения взаимной растворимости соединений $TlInS_2$ -CuInS₂ образцы сплавов $Tl_{1-x}Cu_xInS_2$ приготавливали сплавлением исходных лигатур согласно стехиометрии в вакуумированных до 1.3 · 10⁻³ Ра кварцевых ампулах методом двухтемпературного синтеза. Однофазность полученных сплавов контролировали методами дифференциально-термического и рентгено-фазового анализов (ДТА и РФА) во всем концентрационном интервале. По данным ДТА, РФА и измерениям удельного сопротивления была построена диаграмма состояния системы TlInS₂-CuInS₂ [5], которая является квазибинарным сечением четверной системы Tl-Cu-In-S и по характеру взаимодействия компонентов представляет собой эвтектическую диаграмму (эвтектика имеет состав 50 mol.% TlInS₂ и CuInS₂ и плавится при 995 К) с ограниченными областями твердых растворов до 3.0 mol.% со стороны TlInS₂ и до 2.0 mol.% со стороны CuInS₂. Методом Бриджмена-Стокбаргера выращены слоистые монокристаллы $Tl_{1-x}Cu_xInS_2$ при значениях *x*, равных 0, 0.005, 0.010, 0.015.

Образцы из Tl_{1-x}Cu_xInS₂ для измерений оптических свойств были получены скалыванием по плоскости естественного скола от массивных монокристаллов и имели толщину порядка 20 µm. При измерении плоскость спайности кристаллов устанавливалась перпендикулярно оптической оси установки. Исследования экситонных спектров образцов Tl_{1-x}Cu_xInS₂ выполнены на специальной установке для комплексных исследований оптических и фотоэлектрических спектров полупроводниковых кристаллов методами модуляционной спектроскопии. В основу установки входит вычислительный комплекс КСВУ-6М, позволяющий автоматизировать процесс записи и математической обработки спектров. Разрешающая способность установки составляла 0.1 meV. Широкий температурный диапазон исследований достигался при помощи гелиевого оптического криостата типа УТРЕКС с системой стабилизации температуры (точность стабилизации составляла 0.02 К). Оптические измерения проведены в области температур 20-200 К.

Рис. 1. Спектры поглощения монокристалла TlInS₂ при различных температурах. *T*, K: 1 - 20, 2 - 40, 3 - 60, 4 - 80. $L = 23 \,\mu$ m.

На рис. 1 представлены спектры поглощения монокристалла TlInS₂ при различных температурах, а на рис. 2, 3 и 4 — для кристаллов $Tl_{1-x}Cu_xInS_2$ при x = 0.005, 0.010 и 0.015 соответственно. Исследованная область длин волн составляла 4600–5050 Å.

Изучение спектров поглощения монокристаллов $Tl_{1-x}Cu_xInS_2$ показало, что с уменьшением температуры край поглощения сдвигается в сторону высоких энергий, а вблизи края собственного поглощения наблюдается четко выраженная полоса поглощения, связанная с переходами в прямое экситонное состояние. В $TIInS_2$ (рис. 1) при 20 К обнаружен экситонный пик с энергией

Рис. 2. Спектры поглощения монокристалла $Tl_{0.995}Cu_{0.005}InS_2$ при различных температурах. *T*, K: *1* — 20, *2* — 70, *3* — 120, *4* — 140, *5* — 160, *6* — 180. *L* = 20 μ m.

Рис. 3. Спектры поглощения монокристалла $Tl_{0.99}Cu_{0.01}InS_2$ при различных температурах. *T*, K: *1* — 20, *2* — 60, *3* — 80. $L = 18 \ \mu$ m.

Рис. 4. Спектры поглощения монокристалла $Tl_{0.985}Cu_{0.015}InS_2$ при различных температурах. *T*, K: $1 - 20, 2 - 60, 3 - 100, 4 - 140, 5 - 160, 6 - 180. L = 17 <math>\mu$ m.

Рис. 5. Температурная зависимость энергетического положения максимума экситонной полосы поглощения в монокристаллах $TIInS_2$ (1) и $TI_{0.985}Cu_{0.015}InS_2$ (2).

2.58 eV. Как было показано выше, такой же экситонный пик в $TllnS_2$ выявлен и в [3] при 10 K. По мере понижения температуры от 200 до 20 K максимум экситонной полосы поглощения смещался в сторону бо́льших энергий.

<i>Т</i> , К	E^{ex} $(n = 1)$, eV						
	TlInS ₂	$Tl_{0.995}Cu_{0.005}InS_2$	$Tl_{0.99}Cu_{0.01}InS_2$	$Tl_{0.985}Cu_{0.015}InS_2$			
20	2.5800	2.5483	2.5609	2.5493			
30		2.5462					
40	2.5758	2.5452	2.5583	2.5457			
50		2.5415					
60	2.5680	2.5389	2.5504	2.5415			
70		2.5337					
80	2.5588	2.5301	2.5415	2.5327			
90		2.5255					
100		2.5198	2.5332	2.5229			
110		2.5137					
120		2.5091	2.5249	2.5127			
140	2.5250	2.4990	2.5132	2.4995			
160		2.4870	2.5005	2.4880			
180		2.4741	2.4890	2.4750			
200	2.4915		2.4775	2.4608			

Таблица 1. Энергетические положения максимумов экситонных пиков монокристаллов $Tl_{1-x}Cu_xInS_2$ (x = 0, 0.005, 0.010, 0.015) при различных температурах

Из рис. 1–4 видно, что для изученных кристаллов интенсивность экситонных пиков с повышением температуры от 20 до 80 К незначительно уменьшается, а при дальнейшем увеличении температуры от 80 до 200 К начинает существенно спадать. Кроме того, с ростом температуры экситонные пики довольно заметно уширялись. Экситонная полоса поглощения монокристаллов $Tl_{1-x}Cu_xInS_2$ была смещена в сторону меньших энергий по сравнению с монокристаллами $TlInS_2$. Энергии, соответствующие максимумам экситонных пиков при различных температурах, сведены в табл. 1.

Как видно из рис. 1–4, с увеличением содержания меди в исследуемых кристаллах наблюдалось уширение экситонной полосы поглощения.

На рис. 5 приведена температурная зависимость положения в спектре максимума экситонной полосы поглощения в монокристалле Tl_{0.985}Cu_{0.015}InS₂ (кривая 2). Для сравнения здесь же приведена зависимость $E^{\text{ex}}(T)$ для TIInS₂ (кривая *I*). Результаты эксперимента показали, что зависимость $E^{\text{ex}}(T)$ имеет два наклона. Коэффициент температурного сдвига экситонного пика в TIInS₂ составлял $\partial E^{\text{ex}}/\partial T = -2.8 \cdot 10^{-4} \text{ eV/K}$ в интервале 20 $\leq T \leq 60 \text{ K}$ и $-5.8 \cdot 10^{-4} \text{ eV/K}$ в области 60 $\leq T \leq 200 \text{ K}$. В результате частичного замещения ионов таллия в TIInS₂ ионами меди коэффициент температурного сдвига этого экситонного пика менялся незначительно, например, для Tl_{0.985}Cu_{0.015}InS₂ $\partial E^{\text{ex}}/\partial T = -2.2 \cdot 10^{-4} \text{ eV/K}$ в интервале 20 $\leq T \leq 60 \text{ K}$ и $-6.1 \cdot 10^{-4} \text{ eV/K}$ в области 60 $\leq T \leq 200 \text{ K}$.

При низких температурах (T = 20 K) в спектре поглощения изученных кристаллов $\text{Tl}_{1-x}\text{Cu}_x\text{InS}_2$ (x = 0, 0.005и 0.01) наряду с основной экситонной полосой наблюдалась вторая полоса, соответствующая n = 2 (рис. 1–3). Наибольшую амплитуду второй экситонный пик имел в кристаллах TlInS₂, а по мере роста содержания меди в кристаллах амплитуда этого пика уменьшалась и, наконец, при x = 0.015 (рис. 4) второй экситонный пик вовсе не проявлялся. Используя энергетические расстояния между максимумами, соответствующими основному и первому возбужденному состояниям экситона, мы определили энергию связи экситона (E_b^{ex}) в изученных кристаллах (табл. 2).

Следует отметить, что по мере роста содержания меди в кристаллах TIInS₂ энергия связи экситона возрастала. Из низкотемпературных ($T \approx 25 \,\mathrm{K}$) исследований спектров поглощения монокристаллов TIInS₂, проведенных в [6], для энергии связи экситона было получено значение 25 meV, которое хорошо согласуется с нашими данными. Полученные значения энергии связи экситона позволили оценить боровский радиус (a^*) и приведенную эффективную массу (m^*) экситона в кристаллах TI_{1-x}Cu_xInS₂, значения которых также приведены в табл. 2. При вычислениях a^* и m^* значение диэлектрической постоянной ($\varepsilon \approx 11$) взято из работы [7].

Используя значения энергии связи экситона, мы определили также значения ширины запрещенной зоны, например, при $T = 20 \text{ K} E_g = 2.60 \text{ eV}$ для TlInS₂ и 2.5793 eV для Tl_{0.995}Cu_{0.005}InS₂.

Таблица 2. Экситонные характеристики монокристаллов $\mathrm{Tl}_{1-x}\mathrm{Cu}_x\mathrm{InS}_2$ при $T=20\,\mathrm{K}$

Состав кристалла	Толщина кристал- ла, µт	$E_1^{\text{ex}}, \text{ eV}$ $(n = 1)$	$E_2^{\text{ex}}, \text{eV}$ (n = 2)	E_b^{ex} , meV	a*, Å	<i>m</i> *
$TlInS_2$	23	2.5800	2.5947	20	33	$0.17m_0$
$Tl_{0.995}Cu_{0.005}IIIS_2$ $Tl_{0.99}Cu_{0.01}InS_2$	18	2.5609	2.6012	51 54	12	$0.27m_0$ $0.46m_0$

Таким образом, можно заключить, что частичное замещение таллия медью в монокристаллах $TlInS_2$ приводит к модифицированию спектров поглощения и изменению экситонных характеристик, т.е. дает возможность управлять оптическими параметрами этих монокристаллов.

Список литературы

- [1] D. Müller, H. Hahn. Z. Anorg. All. Chem. B438, 258 (1978).
- [2] G.D. Guseinov, E. Mooser, E.M. Kerimova, R.S. Gamidov, I.V. Alekseev, M.Z. Ismailov. Phys. Stat. Sol. 34, 33 (1969).
- [3] J.A. Kalomiros, A.N. Anagnostopolus. Phys. Rev. B50, 11, 7488 (1994).
- [4] И.В. Боднарь. Неорган. материалы 36, 2, 157 (2000).
- [5] E.M. Kerimova, G.D. Guseinov, F. Mamedov. Turkich J. of Physics 21, 2, 225 (1997).
- [6] М.Я. Бакиров, Г.И. Абуталыбов, Н.М. Зейналов. ФТП 17, 7, 1357 (1983).
- [7] С.Н. Мустафаева, М.М. Асадов, В.А. Рамазанзаде. ФТТ 38, 1, 14 (1996).