06;12

Кластеризация структуры, предшествующая концентрационным фазовым переходам

© С.В. Титов, Л.А. Шилкина, Л.А. Резниченко, С.И. Дудкина, О.Н. Разумовская, С.И. Шевцова, Е.М. Кузнецова

Научно-исследовательский институт физики Ростовского государственного университета E-mail: klevtsov@iphys.rnd.runnet.ru

Поступило в Редакцию 6 апреля 2000 г.

Исследованы процессы образования и развития объемных кристаллохимических дефектов мезоскопического масштаба (кластеров) — зародышей новых фаз в системах, испытывающих концентрационные фазовые переходы. Показано, что их ступенчатая эволюция в процессе приближения твердых растворов к морфотропной области проходит несколько этапов, которые находят отклик в изменении макроскопических свойств. Высказано предположение о роли кластеров в формировании экстремальных электрофизических параметров рассматриваемых объектов.

В проблеме неоднородности конденсированных сред наибольший интерес в последнее время проявляется к образованию объемных кристаллохимических дефектов мезоскопического масштаба (кластеров), возникающих при ассимиляции и упорядочении вакансий и внедренных атомов. Кластеризация структуры обнаружена во многих оксидных системах, в том числе простых монооксидах, ферритах, неупорядоченных сегнетоэлектрических соединениях, в которых показана ее роль при полиморфных превращениях и формировании макроскопических свойств [1,2].

Цель настоящего исследования — изучение процессов развития кластерных структур — зародышей новых фаз в окрестности концентрационных фазовых переходов (ФП). Объемны исследования — сегнетоэлектрические твердые растворы (ТР) состава (1 - x)NaNbO₃-*x*PbTiO₃ (1), *x*PbTiO₃-(1 - x - y)PbZrO₃- $y \sum (PbB'_{1-\beta}B'_{\beta}O_3)_n$ (B'-Nb, W; B"-Li, Zn,

9

Мg, Ni; n = 4) (2), полученные твердофазным синтезом с последующим спеканием без давления (1) или горячим прессованием (2). В системе (1) рассматривались TP (1), по составу отвечающие двум фрагментам фазовой диаграммы: с $x = 0.2195 \div 0.305$ (ромбическая PI-область) и $x = 0.40 \div 0.70$ (тетрагональная T₁-область), расположенным между морфотропными областями (MO); в системе (2) анализировались TP (2) с $x = 0.30 \div 0.37$, принадлежащие ромбоэдрической (Rh), T- и MO-областям.

Экспериментально установлено немонотонное поведение концентрационных зависимостей среднего параметра (\bar{a}_2) приведенной перовскитной ячейки, рентгеновской (ρ_1) и измеренной (ρ_2) плотностей керамических образцов, а также характеристик, определяющих размы-

Puc. 1. Зависимости от $x \bar{a}_1(I), \bar{a}_2(2), a_{T_2}(3), c_{T_2}(4), \rho_2(5), \rho_1(6), \rho_3(7), \Delta(8), \overline{\delta\alpha}_{\varepsilon_{33}^T/\varepsilon_0}(9), \overline{\Delta\alpha}_{\varepsilon_{33}^T/\varepsilon_0}(10), \varepsilon_{33}^T/\varepsilon_0(11)$ в системах 1 (*a*) и 2 (*b*).

Письма в ЖТФ, 2000, том 26, вып. 18

Письма в ЖТФ, 2000, том 26, вып. 18

тие $\Phi\Pi$ (Δ^1) и разброс электрофизических параметров ($\overline{\Delta\alpha}, \overline{\delta\alpha}^1$) (рис. 1). Отмечено также некоторое снижение относительной плотности, свидетельствующее о разрыхлении структуры. Наблюдаемое не может быть объяснено в модели идеальных и даже реальных (со статически распределенными дефектами) ТР. Учитывая, что все рассматриваемые объекты не содержат примесных включений, подобные изменения характеристик могут быть связаны с возникновением и развитием объемных кристаллохимичпских дефектов мезоскопического масштаба (кластеров). Образование последних должно сопровождаться локальными флукатуациями состава, что и подтверждено электроннозондовыми исследованиями (растровый электронный микроскоп микроанализатор Комебакс-микро). В системе (1) выявлены области, обогашенные Pb и Ti, черелующиеся с областями, имеющими их пониженное содержание. Как показывают сканограммы, колебания количеств указанных элементов минимальных вдали (x = 0.40, 0.45) и вблизи (x = 0.70) МО. При x = 0.5 колебания увеличиваются и достигают максимальной величины при x = 0.6.

С целью выяснения природы таких нарушений была детально изучена дифракционная картина рассматриваемых ТР. Анализу подвергались профили брэгтовской и диффузионной составляющих рентгеновского рассеяния. Как свидетельствуют полученные данные, имело место перераспределение интенсивностей между интерференционными максимумами и фоном. Так, в системе (1) слева от концентрационного ФП, происходящего в интервале 0.75 < x < 0.85, при сохранении общей дифракционной картины, характерной для T₁-структуры TP, тонкая структура интенсивности фона в интервале $2\theta = 56 \div 57$ grad (Fe_{Ka}-излучение) изменяется в зависимости от *x*: при *x* = 0.40 отмечаются слабые колебаний фона, затем (x = 0.45) незначительно возрастает интенсивность фона, далее появляются несколько очень слабых равновеликих диффузных максимумов (x = 0.50) и, наконец, они сливаются в один (x = 0.60), сильно размытый (гало). Одновременно происходит постепенное уменьшение интенсивности отражения 002 основной Т₁-фазы. Появившийся диффузный максимум, очевидно,

 $^{^1}$ Δ определялось из зависимости диэлектрической проницаемости (ε) от температуры (T) по формуле $\Delta = \Delta T/1.633$ [K] [3], где ΔT взято на уровне $\varepsilon = 0.75_{\rm max}$; абсолютное ($\overline{\Delta\alpha}$) и относительное ($\delta\alpha$) отклонения величины α (в нашем случае относительной диэлектрической проницаемости поляризованных образцов $\varepsilon_{33}^T/\varepsilon_0$) от среднего значения вычислены по стандартным формулам [4].

является результатом когерентного рассеяния рентгеновских лучей образовавшимися областями мезоскопического масштаба — кластерами. Различие параметров их элементарных ячеек и матрицы позволяет не только проследить за развитием, но и оценить размеры кластеров по полуширинам диффузных максимумов: при x = 0.50-80 Å, при x = 0.60-90 Å, а при $x \ge 0.75$ на месте диффузного максимума появляется ренгеновская линия, интенсивность которой усиливается, а полуширина уменьшается с ростом х. Установлено, что увеличение среднего межплоскостного расстояния (\overline{d}_{002}) кластера с ростом x происходит с большей скоростью, чем d_{002} матричной T_1 -фазы. Это свидетельствует о неравномерном распределении PbTiO₃ между матрицей и новой фазой: в последнюю его поступает больше. Принимая во внимание предстоящий при $x \ge 0.75 \ \Phi\Pi$, естественно предположить, что обнаруженные кластеры — это зародыши новой T₂-фазы, образовавшейся в кристаллической T₁-матрице. Сопоставляя результаты электроннозондового и рентгеноструктурного анализов, можно сделать вывод о том, что в системе (1) уже на расстоянии $\sim 20 \text{ mol.}\%$ от МО образуется гетерогенная область, с когерентно-дифрагирующими блоками новой фазы мезоскопического масштаба. При этом совпадение положения линий 100 "старой" и новой фаз говорит об общности плоскости (100) матрицы и кластера, что позволяет сделать вывод о когерентности связи последнего с исходной T₁-структурой. В случае, когда прямое наблюдение за процессом образования кластеров оказывалось невозможным (из-за близости численных значений параметров ячеек основной и зарождающейся фаз и, как следствие, наложения рентгеновских рефлексов), динамика их формирования отслеживается по изменению величины ΔD -разности в размерах областей когерентного рассеяния, рассчитанных по полуширине и интегральной ширине дифракционных линий. Возрастание этой величины вдали от МО свидетельствует об увеличении количества кластеров и достижении ими при ΔD максимальном, критических размеров, уменьшение ее при приближении к МО отражает факт отрыва кластера от матрицы и автономного развития новой фазы (рис. 2, *a*, *b*).

При сохранении когерентности в процессе роста кластеров в плоскости их сопряжения с матрицей возникают значительные упругие деформации, нарастающие по мере увеличения их размеров и количества. С определенного момента процесс становится лавинообразным, что вызывает резкое возрастание микродеформаций ($\Delta d/d$) вблизи

Рис. 2. Зависимости от $x \Delta d/d$ (1), ΔD (2), $\varepsilon_{33}^T/\varepsilon_0$ (3), K_p (4), в системах I (a) и 2 (b, c). (На рис. 2, a, b в квадратных скобках указаны направления, в которых определялись $\Delta d/d$ и ΔD . На рис. 2, c указаны следующие ступени развития кластерных структур: I, I' — начало образования кластеров Т- и Rh-фаз соответственно; II, II' — достижение кластерами критических размеров; III, III' — начало отрыва кластеров от матрицы; IV, IV' — завершение процесса отрыва кластеров от матрицы. A — однофазная, B — гетерогенная, C — гетерофазная области).

МО. Достигнув предела упругой деформации система переходит в фазу пластической деформации с разрывом когерентной связи исходной и новой фаз и выделением последней в самостоятельную структурную единицу. При этом ввиду определенной анизотропии среды эти разрывы происходят не одновременно, а последовательно, захватывая все большее число кластеров. Это сопровождается резким уменьшением микродеформаций и релаксацией напряжений (рис. 2, *a*, *b*).

Со ступенчатой эволюцией кластеров в процессе изменения состава ТР связано не только аномальное поведение параметров тонкой кристаллической структуры, но и электрофизических свойств вдали и в окрестности МО. Видно (рис. 2, *c*), что "особые" точки (изменения наклона, максимумы, минимумы) на кривых $\Delta d/d(x)$, $\Delta D(x)$, $\varepsilon_{33}^T/\varepsilon_0(x)$, $K_p(x)$ (коэффициент электромеханической связи) соответствуют определенным стадиям развития кластерных структур. В связи с этим нам представляется, что наряду с установленными в [5] закономерностями

формирования экстремальных свойств ТР вблизи концентрационных ФП дополнительный вклад в этот процесс привносят образующиеся уже вдали от МО мезоскопические неоднородности, обусловленные потерей устойчивости одной из фаз [6], приводящей к частичному разупорядочению исходной структуры.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследования, грант № 99-02-17575.

Список литературы

- [1] Архаров В.И. // Проблемы современной физики. Л.: Наука, 1980. С. 357-382.
- [2] Бунина О.А., Захарченко И.Н., Тимонин П.Н., Сахненко В.П. // Кристаллография. 1975. Т. 40. № 4. С. 708–712.
- [3] Боков А.А. // ЖЭТФ. 1997. Т. 111. № 5. С. 1817–1832.
- [4] Касандрова О.Н., Лебедев В.В. / Обработка результатов наблюдения. М.: Наука, 1970. 104 с.
- [5] Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н. // Новые пьезокерамические материалы. Ростов-на-Дону: Изд-во РГУ, 1983. 158 с.
- [6] Гуфан Ю.М. Структурные фазовые переходы. М.: Наука, 1982. 304 с.