Колебательный спектр и упругие свойства кристалла KPb₂Cl₅

© К.С. Александров, А.Н. Втюрин, А.П. Елисеев*, Н.Г. Замкова, Л.И. Исаенко*, С.Н. Крылова, В.М. Пашков*, П.П. Түрчин**, А.П. Шебанин*

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

* Объединенный институт геологии, геофизики и минералогии Сибирского отделения Российской академии наук, Новосибирск, Россия

** Красноярский государственный университет,

660041 Красноярск, Россия

E-mail: vtyurin@iph.krasn.ru

(Поступила в Редакцию 22 июня 2004 г.)

Проведено экспериментальное исследование спектров комбинационного рассеяния света и упругих постоянных кристалла KPb₂Cl₅. Результаты интерпретируются с использованием беспараметрической модели динамики решетки кристалла, учитывающей мультипольные моменты электронных оболочек ионов. Достигнуто хорошее согласие результатов расчета и эксперимента. Показано, что низкие частоты фононного спектра кроме массы галогена связаны также с заметным вкладом смещений тяжелых катионов в собственные векторы высокочастотных колебаний решетки.

Работа выполнена при поддержке программы интеграции СО РАН (проект № 88), Программы поддержки ведущих научных школ (проект НШ-939.2003.2), программ Президиума РАН и ОФН РАН.

Современное развитие твердотельных систем нелинейной оптики и фотоники инфракрасного диапазона стимулирует поиск и создание новых материалов с широким окном прозрачности в ИК области (низкочастотная граница — до $30\,\mu$ m). В связи с этим в последнее время возрос интерес к исследованию оптических и спектральных свойств сложных галогенидов, содержащих тяжелые катионы, которые обладают относительно коротким фононным спектром в отличие от традиционных оксидных систем.

Кристаллы семейства $Me^+Pb_2Hal_5$ (здесь Me^+ — щелочной металл, Hal — галоген) обладают таким окном прозрачности в ИК диапазоне; для них разработаны методики выращивания достаточно объемных монокристаллических образцов [1]. Эти кристаллы достаточно устойчивы к атмосферным воздействиям в отличие от многих других сложных галогенидов. Довольно рыхлая упаковка ионов большого радиуса в решетке обусловливает широкие возможности для вариаций состава и свойств кристаллов и открывает перспективу их использования в качестве активных лазерных сред [2]. В то же время общефизические свойства этих кристаллов изучены достаточно слабо.

Настоящая работа посвящена излучению колебательного спектра и упругих свойств кристалла KPb₂Cl₅, относящегося к этому семейству. Проведение такого исследования позволяет, с одной стороны, определить природу формирования низкочастотной границы окна прозрачности кристалла, установить, какие структурные единицы и взаимодействия определяют ее положение. С другой стороны, это дает возможность получить в рамках того же подхода информацию о связи структуры кристалла с его упругими константами, интересными как с точки зрения материаловедческой характеризации вещества, так и для возможных его применений в акустооптических устройствах ИК диапазона.

Для интерпретации колебательного спектра, установления связи частот колебаний решетки с ее структурой был использован недавно развитый первопринципный подход [3–5]. Необходимо отметить, что традиционно применяемые для этой цели эмпирические методы (см., например, [6,7]) в случае низкосимметричных структур с большим количеством атомов в элементарной ячейке приводят к необходимости введения большого количества подгоночных параметров, определить которые, используя ограниченный набор экспериментальных данных, не удается. В связи с этим использование беспараметрических методов становится принципиально важным.

1. Методики измерений

Кристаллы KPb₂Cl₅ относятся к моноклинной пространственной группе $P2_1/c$, a = 8.854(2) Å, b = 7.927(2) Å, c = 12.485(3) Å, $\beta = 90.05(3)$, V = 876.3(4) Å³, Z = 4, плотность 4.781 g/cm³. Координаты атомов приведены в табл. 1, проекция структуры на плоскость *bc* показана на рис. 1 [8].

Таблица 1. Атомные координаты $(\times 10^4)$ для кристалла KPb_2Cl_5

	X	Y	Ζ
K(1)	5092(5)	514(6)	1696(4)
Pb(1)	65(1)	58(1)	1742(1)
Pb(2)	2547(1)	4359(1)	9937(1)
Cl(1)	9585(4)	1655(5)	4023(3)
Cl(2)	2218(4)	405(4)	9986(3)
Cl(3)	5401(5)	1798(6)	4186(4)
Cl(4)	2355(5)	3117(5)	2204(3)
Cl(5)	7702(6)	3449(5)	1885(3)

Рис. 1. Проекция структуры кристалла KPb₂Cl₅ на плоскость *bc*. Показана псевдогексагональная упаковка вытянутых в направлении *a* каналов, содержащих катионы металлов. Цифры — номера ионов в соответствии с рис. 4.

Для получения монокристаллов оптического качества исходные реагенты PbCl₂ и KCl очищались многократной перекристаллизацией. Кристаллы KPb₂Cl₅ выращивали методом Бриджмена в двузонной печи. Линейный температурный градиент печи в ростовой зоне составлял около 20 K/cm, скорость движения ампулы в холодную зону — 2–4 mm/day. Более подробно методика описана в [9]. Кристаллическая структура определялась при комнатной температуре с помощью монокристаллического дифрактометра STOE STADI4 с использованием Мо K_{α} -излучения ($2\theta_{max} = 80^{\circ}$). Образцы для экспериментов выбирались таким образом, чтобы исключить видимые в поляризационный микроскоп включения или дефекты, и готовились механической обработкой с последующей полировкой в растворе соляной кислоты.

Для получения спектров КР в качестве источника возбуждения было использовано поляризованное излучение 514.5 nm Ar⁺ лазера мощностью 500 mW. Спектры были получены на спектрометре U-1000 (I.S.A. Jobin Yvon, Франция). Для экспериментов использовались образцы размером $2 \times 2 \times 4$ mm с ребрами, ориентированными по кристаллографическим осям кристалла.

Определение модулей упругости $C_{\lambda\mu}$ выполнено методом измерения скоростей объемных акустических волн (OAB) с последующим решением обратной задачи кристаллоакустики.

Для измерения скоростей ОАВ использовалось четыре образца монокристалла в виде прямоугольных параллелепипедов с линейными размерами около 6 mm. Направления нормалей к граням для первого образца совпадали с направлениями кристаллофизических осей (направления [100], [010] и [001]). Грани трех оставшихся образцов были перпендикулярны осям системы координат, полученной из исходной поворотами на 45° относительно осей X_1 (направления [100], $\left[0\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$ и $\left[0\frac{-1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$), X_2 (направления $\left[\frac{1}{\sqrt{2}}0\frac{1}{\sqrt{2}}\right]$, [010]и $\left[\frac{-1}{\sqrt{2}} 0 \frac{1}{\sqrt{2}}\right]$ и X_3 (направления $\left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} 0\right]$, $\left[\frac{-1}{\sqrt{2}} \frac{1}{\sqrt{2}} 0\right]$ и [001]) соответственно. В рассматриваемой симметрии кристалла указанный набор направлений позволяет для каждого измеряемого значения скорости выполнить два независимых измерения в различных кристаллофизических направлениях. Рентгеновская ориентировка образцов была выполнена с точностью не хуже ±5'. Плоскопараллельность противоположных граней образцов не хуже $\pm 2 \mu m/m$.

Скорости продольных и сдвиговых ОАВ были измерены импульсным ультразвуковым методом [10], блоксхема установки приведена на рис. 2. Принцип работы установки основан на измерении времени распространения ультразвукового импульса в образце. Короткий (10 ns) видеоимпульс с генератора 1 подается на пьезопреобразователь 2 (для измерения скоростей ОАВ использованы пьезопреобразователи на основе ниобата лития с резонансной частотой 29.5 MHz) и после многократного отражения в образце 3 серия импульсов, предварительно усиленная усилителем 4, визуально регистрируется осциллографом 5. Основная последовательность импульсов измерителя временных интервалов 6 запускает генератор 1, последовательность задержанных импульсов синхронизирует развертку осциллографа 5. Экспериментально процедура измерений состоит в определении временного промежутка между

Рис. 2. Блок-схема ультразвуковой экспериментальной установки. *I* — генератор видеоимпульсов Г5-11, *2* — пьезопреобразователь, *3* — образец, *4* — резонансный усилитель У2-5 (30 MHz), *5* — стробоскопический осциллограф С7-9, *6* — измеритель временных интервалов И2-26, *7* — диодный ограничитель амплитуды зондирующего импульса, *8* — аналогоцифровой преобразователь 9 — АЦП 1.

двумя последовательно расположенными отраженными радиоимпульсами на экране осциллографа. Примененная схема позволяет получить точность 10^{-2} % при абсолютных и 10^{-4} % при относительных измерениях скоростей ОАВ.

2. Результаты и обсуждение

2.1. Колебательный спектр. Разложение колебательного представления по неприводимым в центре зоны Бриллюэна имеет вид

$$\Gamma = 24A_g(xx, yy, zz, xy, yx) + 24B_g(xz, zx, yz, zy) + 24A_u + 24B_u,$$
(1)

где в скобках указаны компоненты тензора КР, в которых активны соответствующие колебания решетки. Отметим, что ввиду низкой симметрии и сложной структуры кристалла выделить моды колебаний, связанные отдельными атомарными подрешетками, на основании теоретико-групповых соображений не представляется возможным.

Полученные экспериментально спектры комбинационного рассеяния кристалла KPb_2Cl_5 при комнатной температуре представлены на рис. 3. Как и ожидалось, спектр ограничен низкими частотами; все наблюдаемые линии лежат ниже $250 \,\mathrm{cm}^{-1}$. Обращает на себя внимание сильная анизотропия спектра, высокая поляризация спектральных линий. Количество хорошо определенных пиков несколько меньше числа, определенного согласно (1), и для их интерпретации необходимо выполнить их соотнесение с результатами модельного расчета.

Рис. 3. Поляризованные спектры комбинационного рассеяния кристалла KPb₂Cl₅.

Таблица 2. Рассчитанные параметры межионных взаимодействий в кристалле KPb₂Cl₅

Параметры	\mathbf{K}^+	Pb^{2+}	Cl ⁻		
$R_W, \text{\AA}$	1.85	1.85	1.16		
$\alpha_d, \check{\mathrm{A}}^3$	0.7	1.6	3.3		
$\alpha_q, \mathrm{\AA}^5$	0.9	1.5	5.8		

Расчет колебательного спектра кристаллической решетки KPb₂Cl₅ проведен в рамках обобщенной модели Гордона–Кима [3,4], в которой учитываются искажения электронной плотности составляющих кристалл ионов. Учет этих искажений особенно важен для низкосимметричных структур, поскольку взаимодействия возникающих в них мультипольных моментов ионов вносят существенный вклад в полную энергию решетки и частоты колебаний кристалла.

Следуя [3,4], распределение электронной плотности каждого иона рассчитывалось в присутствии внешних полей соответствующей симметрии

$$V_{\text{ext}}^{(l)} = r^{(l)} P_l(\cos\theta), \qquad (2)$$

где $P_l(\cos \theta)$ — полиномы Лежандра. В качестве сферически симметричной компоненты внешнего поля использовался потенциал сферы Ватсона

$$V_W = \begin{cases} -Z_{\rm ion}/R_W, & r < R_W \\ -Z_{\rm ion}/r, & r > R_W \end{cases}.$$
 (3)

При расчетах учитывались дипольные (l = 1) и квадрупольные (l = 2) искажения электронной плотности.

Значения радиусов сфер Ватсона для каждого иона определялись путем минимизации полной энергии кристалла и приведены в табл. 2. Там же показаны дипольные (α_d) и квадрупольные (α_q) поляризуемости ионов, рассчитанные с помощью модифицированного уравнения Штенхаймера [3,4]. Соответствующие им значения индуцированных дипольных P и квадрупольных Q моментов находились из условия минимума полной энергии кристалла по отношению к соответствующему моменту: $\partial E/\partial P_{\alpha} = 0$, $\partial E/\partial Q_{\alpha\beta} = 0$. Выражения для расчета полной энергии кристалла, дипольных и квадрупольных моментов, а также динамической матрицы приведены в [4,5].

Равновесные значения параметров решетки уточнялись по минимуму полной энергии кристалла как функции этих параметров, при этом использовались экспериментальные значения координат атомов в элементарной ячейке (табл. 1); полученные в результате значения a = 8.7 Å, b = 7.6 Å, c = 12.5 Å хорошо согласуются с экспериментальными данными.

Для собственных векторов, полученных в результате диагонализации динамической матрицы, был проведен симметрийный анализ. Построено полное колебательное

$A_g, \omega, \mathrm{cm}^{-1}$		$B_g, \omega, \mathrm{cm}^{-1}$			
Расчет	Эксперимент	Расчет	Эксперимент		
34 <i>i</i>		38 <i>i</i>			
26 <i>i</i>		28 <i>i</i>			
25 <i>i</i>		6			
21	18	28	33		
34	27	39	40?		
41	35	45	42		
45	43	46	48		
53	50	57	57		
57	56	64			
58		67			
60	62	71			
67		74	75		
73	73	80	85		
76		84			
86	85	90	88		
91		95	95		
92		100			
101		103	108		
106	108	107	119		
110	120	115	132		
123	124	120	144		
129	127	129	158		
134	132	140	173		
159	200?	161	202		

Таблица 3. Экспериментальные и расчетные частоты колебаний решетки кристалла KPb₂Cl₅, активные в спектре KP

представление P(g) пространственной группы кристалла, на основе которого были вычислены операторы проектирования [11]

$$\Gamma_{\rho} = \frac{N(\rho)}{N(g)} \sum_{g \in G} \chi_{\rho}(g) \, \Gamma(g), \tag{4}$$

где $N(\rho)$ — размерность представления ρ точечной операции симметрии, N(g) — размерность группы симметрии, $\chi_{\rho}(g)$ — характер матрицы неприводимого представления ρ , $\Gamma(g)$ — колебательное представление операции симметрии данного неприводимого представления ρ группы G, Γ_{ρ} — оператор проектирования, суммирование проводится по всем операциям группы симметрии. Собственный вектор колебания **f** преобразуется по неприводимому представлению ρ группы G, если он удовлетворяет критерию [11]

$$\Gamma_{\rho} \mathbf{f} = \frac{N(g)}{N(\rho)} \mathbf{f}.$$
 (5)

Данный алгоритм разложения собственных векторов динамической матрицы по неприводимым представлениям был реализован в программном пакете Mathematica 4.2.

Полученные в результате эксперимента частоты линий спектра КР и их соотнесение с рассчитанными значениями показаны в табл. 3. Отметим, что наблюдается хорошее согласие полученных значений в средней части спектра. В области самых низких (менее 20 cm⁻¹) частот результаты расчета сильно зависят от малых изменений координат атомов — их вариация в пределах ошибки эксперимента может приводить к значительным (до 100%) изменениям частот колебаний.

На рис. 4 показаны относительные вклады смещений атомов решетки в собственные векторы соответствующих мод (учтена перенормировка на массы ионов). Для проверки правильности процедуры выполнен расчет смещений атомов для акустической моды; результат, подтверждающий ее корректность, показан на рис. 4, а. На рис. 4, b представлены смещения, соответствующие самой высокочастотной моде спектра, которая определяет границу окна прозрачности кристалла. Из рисунка видно, что, хотя наибольшие смещения и соответствуют ионам хлора, тем не менее вклад тяжелых ионов металлов в собственный вектор этого колебания остается значительным, с чем, видимо, и связано относительно низкое значение соответствующей частоты (по сравнению, например, с высокосимметричными перовскитоподобными хлоридными системами [15]).

Отметим, что, как видно на рис. 4, c–4, e, низкая симметрия структуры приводит к сильному взаимодействию колебаний атомарных подрешеток практически во всех модах колебаний; в частности, даже самые низкочастотные моды содержат значительный вклад смещений легких ионов хлора.

2.2 Упругие константы. Задача определения модулей упругости $C_{\lambda\mu}$ методом измерения скоростей

Таблица 4. Скорости ОАВ в монокристалле KPb₂Cl₅ (эксперимент)

N₂	Направление распространения	Тип волны	Тип волны Поляризация	
1 2	[001]	QL SS	[001] [010]	2766.2 1520.8
3		QSF	[100]	1532.6
4	$\left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} 0\right]$	QL	$\left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} 0\right]$	3027.4
5		QSS	$\left[\frac{-1}{\sqrt{2}} \frac{1}{\sqrt{2}} 0\right]$	1442.5
6		QSF	[001]	1529.1
7	[010]	L	[010]	2717.8
8		SF	[001]	1731.3
9		SS	[100]	1521.0
10	$\left[\frac{1}{\sqrt{2}} 0 \frac{1}{\sqrt{2}}\right]$	QL	$\left[\frac{1}{\sqrt{2}} 0 \frac{1}{\sqrt{2}}\right]$	2894.0
11		QSS	$\left[\frac{-1}{\sqrt{2}} 0 \frac{1}{\sqrt{2}}\right]$	1464.6
12		SF	[010]	1610.2
13	[100]	QL	[100]	3010.3
14		QSS	[001]	1532.8
15		SF	[010]	1730.6
16	$\left[0 \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right]$	QL	$\left[0\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\right]$	2778.9
17		QSS	$\left[0 \frac{-1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right]$	1471.5
18		QSF	[100]	1637.7

Рис. 4. Относительная амплитуда колебаний ионов акустической моды (*a*), высокочастотной моды (*b*) и низкочастотной моды (*c*). *d* — относительная амплитуда колебаний ионов моды среднего диапазона, активной в КР спектре; *e* — относительная амплитуда колебаний ионов полярной моды, неактивной в спектре КР.

ОАВ для моноклинных сред решена в [12] и подробно обсуждается в [13]. В выбранной кристаллографической установке матрица модулей упругости кристалла имеет вид [14]

$$\begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & C_{15} & 0 \\ C_{12} & C_{22} & C_{23} & 0 & C_{25} & 0 \\ C_{13} & C_{23} & C_{33} & 0 & C_{35} & 0 \\ 0 & 0 & 0 & C_{44} & 0 & C_{46} \\ C_{15} & C_{25} & C_{35} & 0 & C_{55} & 0 \\ 0 & 0 & 0 & C_{46} & 0 & C_{66} \end{pmatrix}.$$

$$(6)$$

Раздельное определение независимых модулей упругости проведено методом особенных направлений [12,13]. Результаты измерений скоростей ОАВ и их основные характеристики приведены в табл. 4. Погрешность экспериментального определения скоростей ОАВ не превышает 0.5 m/s.

Значения упругих модулей $C_{\lambda\mu}$ вычисляются из известных собственных значений ρv^2 тензора Грина–Кристоффеля [13] $\Gamma_{\alpha\gamma} = C_{\alpha\beta,\gamma\delta}n_{\beta}n_{\delta}$ путем решения уравнений Грина–Кристоффеля ($\Gamma_{\alpha\gamma} - \rho v^2 \delta_{\alpha\gamma}$) $U_{\delta} = 0$ для каждого из кристаллофизических направлений. Здесь $\rho = 4.780$ g/cm³ — плотность исследуемого кристалла;

Рис. 4 (продолжение).

Константа	C_{11}	C_{12}	<i>C</i> ₁₃	C_{15}	C_{22}	C ₂₃	C ₂₅	C ₃₃	C ₃₅	C_{44}	C46	C 55	C 66
Эксперимент	4.34	1.93	1.77	$-0.55 \\ -0.03$	3.53	1.52	0.05	3.62	0.06	1.11	0.03	1.10	1.43
Расчет	4.00	1.30	1.37		3.87	1.42	0.01	3.47	0.01	1.30	0.03	1.30	1.24

Таблица 5. Экспериментальные и расчетные значения упругих констант кристалла KPb₂Cl₅ (10¹⁰ n/m²)

 ν — скорость ОАВ с поляризацией U_{δ} ; n_{α} — направляющие косинусы волновой нормали; $C_{\alpha\beta,\gamma\delta}$ — тензор модулей упрогости, компоненты которого связаны с их матричным представлением $C_{\lambda\mu}$ известным преобразованием Фохта [14].

Вычисление значений упругих констант монокристалла выполнено в последовательности, изложенной в [12,13]. Полученные в результате значения модулей упругости в единицах 10¹⁰ n/m² приведены в табл. 5. В этой же таблице приведены значения упругих констант, рассчитанных в модели Гордона–Кима. Для центросимметричных кристаллов упругие константы связаны с динамической матрицей кристалла выражениями [6]

$$C_{\alpha\beta,\gamma\delta} = [\alpha\beta,\gamma\delta] + [\gamma\beta,\alpha\delta] - [\alpha\gamma,\beta\delta],$$
$$[\alpha\beta,\gamma\delta] = \frac{1}{2V} \sum_{k,k'=1}^{N_a} \sqrt{m_k m_{k'}} D_{kk',\alpha\beta}^{\gamma\delta}, \tag{7}$$

где V — объем элементарной ячейки; k, k' — номера ионов; N_a — число ионов в ячейке; m_k — массы ионов,

$$D_{kk',\alpha\beta}^{\gamma\delta} = \frac{\partial^2 D_{kk',\alpha\beta}}{\partial q_{\gamma}\partial q_{\delta}}\bigg|_{q=0}$$

— коэффициенты разложения динамической матрицы *D* по волновому вектору **q** при члене второго порядка.

Сравнение определенных экспериментально и рассчитанных величин показывает их хорошее согласие.

Таким образом, в результате проведенных исследований получены поляризованные спектры комбинационного рассеяния света кристалла KPb₂Cl₅ и выполнена их интерпретация с использованием беспараметрической модели, учитывающей высшие мультипольные моменты ионов кристаллической решетки. Показано, что развитая модель позволяет достичь хорошего согласия расчетных и экспериментальных частот колебательного спектра ионного кристалла сложной низкосимметричной структуры. Определены и проанализированы собственные векторы колебаний решетки; установлено, что низкие частоты фононного спектра связаны с заметным (хотя и малым) вкладом тяжелых катионов даже в собственные векторы наиболее высокочастотных мод колебаний.

Экспериментально и теоретически в рамках того же подхода определены упругие константы кристалла; также достигнуто хорошее согласие экспериментальных и расчетных значений.

Авторы благодарят В.И. Зиненко за полезное обсуждение результатов.

Список литературы

- K. Nitsch, M. Dusek, M. Nikl, K. Polak, M. Rodova. Progr. Cryst. Growth Charact. Mat. 30. 1 (1995).
- [2] R. Balda, J. Fernandez, A. Mendioroz, M. Voda, M. Al-Saleh. Phys. Rev. B 68, 165 101 (2003).
- [3] О.В. Иванов, Д.А. Шпорт, Е.Г. Максимов. ЖЭТФ 114, 333 (1998).
- [4] N.G. Zamkova, V.I. Zinenko, O.V. Ivanov, E.G. Maksimov, S.N. Sofronova. Ferroelectrics 283, 49 (2003).
- [5] А.Н. Втюрин, С.В. Горяйнов, Н.Г. Замкова, В.И. Зиненко, А.С. Крылов, С.Н. Крылова, А.Д. Шефер. ФТТ 46, 1261 (2004).
- [6] М. Борн, Хуан Кунь. Динамическая теория кристаллических решеток. Изд-во иностр. лит., М. (1958). 388 с.
- [7] М.Б. Смирнов. В сб.: Динамическая теория и физические свойства кристаллов / Под ред. А.Н. Лазарева. Наука, СПб (1992). С. 41.
- [8] А.А. Меркулов, Л.И. Исаенко. Труды V международной конференции "Кристаллы: рост, свойства, реальная структура, применение". Александров (2001). С. 83.
- [9] А.А. Меркулов, Л.И. Исаенко. Структурная химия 45, 724 (2004).
- [10] Б.П. Сорокин, П.П. Турчин, Д.А. Глушков. ФТТ 36, 2907 (1994).
- [11] Г. Штрайтвольф. Теория групп в физике твердого тела. Мир, М. (1971). 262 с.
- [12] К.С. Александров. Кристаллография 3, 630 (1959).
- [13] К.С. Александров, Г.Т. Продайвода. Анизотропия упругих свойств минералов и горных пород. Изд-во СО РАН, Новосибирск (2000), 353 с.
- [14] Ю.И. Сиротин, М.П. Шаскольская. Основы кристаллофизики. Наука, М. (1975). 680 с.