Электронная структура и магнитные состояния кристаллической и фуллереноподобной форм дихлорида никеля NiCl₂

© А.Н. Еняшин, Н.И. Медведева, Ю.Е. Медведева, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: ivanovskii@ihim.uran.ru

(Поступила в Редакцию 12 июля 2004 г.)

В рамках функционала локальной спиновой плотности (LSDA) изучены электронная структура и магнитные свойства кристаллической и фуллереноподобной форм дихлорида никеля NiCl₂. Показано, что учет магнитного упорядочения позволяет воспроизвести запрещенную щель в зонном спектре NiCl₂, а метамагнитная природа дихлорида (переход $A\Phi M \rightarrow \Phi M$ в слабом поле) объясняется малой (0.025 eV/cell) разностью полных энергий ферромагнитной и антиферромагнитной фаз. Полиэдрические трехслойные наночастицы NiCl₂ являются магнитными (магнитные моменты Ni составляют 2.0–2.3 μ_B). Для изоструктурных наночастиц FeCl₂ магнитные моменты Fe возрастают до $4.2-4.5\mu_B$, тогда как частицы CdCl₂ немагнитны. Анализ межатомных взаимодействий указывает на возможность отклонения состава дихлоридных фуллереноподобных наночастиц от "стехиометрического" 1:2.

Работа поддержана Российским фондом фундаментальных исследований (проекты № 04-03-32111 и 04-03-96117 (Урал)).

Среди магнитных материалов с широким диапазоном потенциальных применений большое внимание привлекают квазидвумерные (2D) метамагнитные системы, наиболее известными из которых являются дихлорид никеля NiCl₂ и ряд изоструктурных (типа CdCl₂) дигалогенидов *d*-металлов. Основное состояние NiCl₂ — антиферромагнитное (AФM). Фаза состоит [1,2] из ферромагнитных (ФМ) слоев Ni, соседние слои упорядочены антиферромагнитно. Переход из AФМ- в ФМ-фазу происходит в слабых магнитных полях.

Наиболее дискуссионным вопросом для NiCl₂, как и для других кристаллических соединений никеля, является [3] механизм образования запрещенной щели (ЗЩ) зонного спектра. Одноэлектронный спин-ограниченный расчет [4] предсказал металлическую проводимость NiCl₂, тогда как эксперименты по фотопроводимости [3] свидетельствуют о наличии ЗЩ ~ 4.6 eV. Предполагают [5,6], что ЗЩ обусловлена переходами из заполненной полосы Ni3*d*-Cl3*p* в зону пустых *d*-состояний никеля, а не переходами между d-d-состояниями никеля, т. е. щель связана с зарядовым переносом и не является щелью Мотта-Хаббарда, как для NiO. Воспрос о роли магнетизма при этом остается открытым.

С другой стороны, недавно методом реактивной лазерной абляции получены [7] уникальные квазиодномерные (1D) и квазинуль-мерные (0D) наноструктуры NiCl₂: нанотрубки и полиэдрические фуллереноподобные наночастицы (ФПЧ) соответственно. Синтезирован ряд ФПЧ родственных дигалогенидов металлов: CdI₂, CdCl₂ и FeCl₂ [8,9]. Какие-либо сведения об электронных и магнитных свойствах этих низкоразмерных систем отсутствуют.

В настоящей работе в рамках формализма функционала локальной спиновой плотности (LSDA) мы впервые провели детальные исследования электронной структуры и магнитных состояний кристаллической (2D) и фуллереноподобной (0D) форм NiCl₂, а также изучили магнитные свойства $\Phi\Pi\Psi$ FeCl₂ и CdCl₂.

Структура слоистого дихлорида никеля (пространственная группа R3m) образована упаковкой молекулярных слоев, составленных из трех атомных сеток Cl-Ni-Cl (рис. 1). Расчеты зонной структуры кристалла NiCl₂ проведены линейным методом muffintin-орбиталей (LMTO) [10] для трех фаз: немагнитной (НМ), ФМ- и реальной АФМ-фазы, состоящей из ФМ-слоев никеля, связанных между собой антиферромагнитно [1,2]. Для НМ-фазы уровень Ферми Е_F совпадает с пиком электронной плотности *d*-состояний никеля. ФМ-упорядочение понижает полную энергию системы на $\sim 0.31 \, \text{eV}$; в спектре состояний появляется ЗЩ $\sim 0.35 \,\text{eV}$ (рис. 2). Таким образом, сравнение результатов для НМ- и ФМ-состояний показывает, что учет магнитного упорядочения в плоскости позволяет получить щель зонного спектра NiCl₂ в рамках приближения LSDA.

Ионная конфигурация Ni²⁺ в NiCl₂-3d⁸; шесть электронов заполняют t_{2g} -зоны, два электрона — e_g -зоны. Для ФМ-фазы заполнены состояния t_{2g} и e_g со спином вверх и t_{2g} со спином вниз. Верх валентной зоны образован e_g -зонами, перекрывающимися с 3*p*-состояниями хлора, т.е. ЗЩ обусловлена переходами между гибридизованными e_g^{+} - и пустыми e_g^{\pm} -состояниями (рис. 2). Магнитный момент никеля равен 1.3 $\mu_{\rm B}$.

Учет АФМ-упорядочения между сетками Ni приводит к понижению заполненной e_g^{\uparrow} -зоны и росту величины ЗЩ до 0.42 eV. Важно подчеркнуть, что полная энергия АФМ-фазы по сравнению с ФМ-фазой на 0.025 eV ниже; при этом существенных различий в зонной структуре АФМ- и ФМ-фаз нет. Таким образом, АФМ-упорядочение слабо влияет на электронные свойства NiCl₂,

Рис. 1. Атомные структуры фрагмента молекулярного слоя NiCl (**a**₁ и **a**₂ — векторы трансляции) и полиздрической (фуллереноподобной) наночастицы состава (NiCl₂)₄₈.

а очень малое расхождение полных энергий AФMи ФМ-фаз позволяет объяснить метамагнитную природу $NiCl_2$, т.е. переход AФM $\rightarrow \Phi$ M в слабом магнитном поле.

Атомные модели низкоразмерных структур NiCl₂ конструировались на основе молекулярного слоя Cl-Ni-Cl, который можно описать примитивными векторами трансляции **a**₁ и **a**₂ (рис. 1). Сверткой "лент", вырезанных из слоя шириной $|c| = na_1 + ma_2$, получили модели хиральных и нехиральных нанотрубок [7,11]. Для построения фуллереноподобных наночастиц использовались фрагменты слоя дихлорида, которые являлись их гранями. В отличие от углеродных фуллеренов вершины этих ФПЧ должны содержать четные числа атомов, чтобы не нарушалась альтернантность связей Ni-Cl. С учетом этого условия может быть построен только один тип полиэдрических частиц, стенки граней которых образованы октаэдрами NiCl₆ с общими ребрами, а каждая вершина — двумя октаэдрами с общей гранью (рис. 1). Для соблюдения стехиометрического состава NiCl₂ необходимо удалить два атома хлора, например, с двух вершин ФПЧ (рис. 1). Такие фуллерены NiCl₂ представляют собой трехоболочечные каркасные наночастицы, внешняя и внутренняя оболочки которых составлены атомами хлора, а средняя — атомами Ni. Наночастицы имеют октаэдрическую морфологию, которая наблюдалась экспериментально [7].

Исследования электронных и магнитных свойств ФПЧ NiCl₂, FeCl₂, CdCl₂ проведены на примере составов (MCl₂)₄₈. Геометрия частиц оптимизировалась методом молекулярной механики MM+ с учетом взаимодействий дипольного типа. Расчеты выполнены спин-поляризованным методом дискретного варьирования (DV) [12]. Модельные плотности состояний представлены на рис. 3. Cl3*p*-состояния локализованы в интервале $8-2 \, \text{eV}$ ниже $E_{\rm F}$. Прифермиевские состояния включают в основном Ni3*d*-орбитали. Для $(\text{NiCl}_2)_{48}$ получен металлоподобный тип спектра. Сходный спектр имеет $(\text{FeCl}_2)_{48}$. Для $(\text{CdCl}_2)_{48}$ верхняя валентная зона образована преимущественно Cl_3p -состояниями, низшие свободные состояния имеют смешанный $\text{Cd}_5s-\text{Cl}_3p$ -тип. Ширина щели составляет $\sim 0.5 \,\text{eV}$. По заселенностям атомных спин-орбиталей для $(\text{NiCl}_2)_{48}$, $(\text{FeCl}_2)_{48}$ и $(\text{CdCl}_2)_{48}$ рассчитаны атомные магнитные моменты, которые составили $2.0-2.3\mu_{\text{B}}$ для $(\text{NiCl}_2)_{48}$ и $4.2-4.5\mu_{\text{B}}$ для $(\text{FeCl}_2)_{48}$. Фуллереноподобная частица $(\text{CdCl}_2)_{48}$ является немагнитной.

Рис. 2. Полная и парциальные плотности состояний ФМ-фазы NiCl₂. LMTO-расчет.

Рис. 3. Модельные плотности *d*-состояний атомов металлов фуллереноподобных наночастиц $(NiCl_2)_{48}$ (*a*), $(FeCl_2)_{48}$ (*b*) и $(CdCl_2)_{48}$ (*c*). DV-расчет. Вертикальная линия — край заполненной полосы.

Расчеты интегралов перекрытия (ИП) и эффективных атомных зарядов (Q) показали, что основную роль в стабилизации ФПЧ $(NiCl_2)_{48}$ и $(FeCl_2)_{48}$ играют кулоновские взаимодействия, а ковалентная составляющая связи мала (ИП < 0.1 e). Степень ионности связи (оценки по формуле Полинга) составляет около 75%. Заряды атомов металлической оболочки наночастиц составляют +(0.33-0.41) в случае Ni и +(0.35-0.46) в случае Fe. Среди неэквивалентных атомов хлора внешней и внутренней оболочек ФПЧ четко выделяются две группы. Величины Q атомов первой группы лежат в интервале -(0.19-0.36) для $(NiCl_2)_{48}$ и -(0.25-0.30)для (FeCl₂)₄₈. В другой группе величины Q гораздо меньше: ~ -0.07 в (NiCl₂)₄₈ и -(0.01-0.10) в (FeCl₂)₄₈, т. е. последняя группа атомов Cl слабо связана с атомами металлов и может легко покинуть каркас наночастиц. В эту группу входят 36 атомов хлора, расположенных на внутренней оболочке наночастицы. Следовательно, стехиометрический состав 1:2 ФПЧ может измениться до соотношения 1:1.25. Последнее хорошо согласуется с данными [7-9], согласно которым состав синтезированных фуллереноподобных частиц дихлоридов составляет 1:1.2 и ниже.

Таким образом, проведенный в рамках формализма функционала LSDA методами LMTO и DV анализ магнитных состояний и электронной структуры кристаллической и фуллереноподобной форм NiCl₂ показал, что учет магнитного упорядочения позволяет получить ЗЩ в зонном спектре кристалла дихлорида. Расчеты полной энергии трех фаз (немагнитной, ферромагнитной и антиферромагнитной) указывают на преимущественную стабильность последней, а малая энергетическая разность ФМ- и АФМ-фаз объясняет метамагнитную природу дихлорида никеля и переход $A\Phi M \rightarrow \Phi M$ в слабом поле.

Полиэдрические трехслойные (фуллереноподобные) наночастицы NiCl₂ являются магнитными (магнитный момент Ni равен $2.0-2.3\mu_{\rm B}$). Для изоструктурных ФПЧ дихлорида железа магнитные моменты Fe возрастают до $4.2-4.5\mu_{\rm B}$, тогда как частицы CdCl₂ немагнитны. Анализ межатомных взаимодействий указывает на возможность отклонения состава частиц от "стехиометрического" т.е. от 1:2.

Список литературы

- [1] L. Landau. Z. Phys. Sow. 4, 675 (1933).
- [2] P.A. Lindgard, R.J. Birgeneau, J. Als-Nielsen, H.J. Guggenheim. J. Phys. C 8, 7, 1059 (1975).
- [3] C.R. Ronda, G.J. Arends, C. Haas. Phys. Rev. B 35, 8, 4038 (1987).
- [4] J. Ackerman, C. Fouassier, E.L. Holt, S.L. Holt. Inorg. Chem. 11, 12, 3118 (1972).
- [5] S. Antoci, L. Minih. Phys. Rev. B 21, 8, 3383 (1980).
- [6] J. Zaanen, G.A. Sawatzky, J.W. Allen. Phys. Rev. Lett. 55, 4, 418 (1985).
- [7] Y.R. Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne. Phys. Chem. Chem. Phys. 5, 8, 1644 (2003).
- [8] Y.R. Hacohen, R. Popovitz-Biro, E. Grunbaum, Y. Prior, R. Tenne. Adv. Mater. 14, 1075 (2002).
- [9] R. Popovitz-Biro, N. Sallacan, R. Tenne. J. Mater. Chem. 13, 7, 1631 (2003).
- [10] O.K. Andersen. Phys. Rev. B 12, 8, 3060 (1975).
- [11] V.V. Ivanovskaya, A.N. Enyashin, N.I. Medvedeva, A.L. Ivanovskii. http://xxx.lanl.gov/cond-mat/0304230 (2003).
- [12] M.R. Press, D.E. Ellis. Phys. Rev. B 35, 9, 4438 (1987).