05;10;11

Определение параметров модельного потенциала взаимодействия из сравнения экспериментальных и теоретических значений пробегов ионов в аморфном веществе

© Е.Г. Шейкин

Научно-исследовательское предприятие гиперзвуковых систем, 196066 Санкт-Петербург, Россия

(Поступило в Редакцию 13 ноября 1998 г.)

Предложен метод определения параметров модельного потенциала межатомного взаимодействия из сравнения экспериментальных и теоретических значений проективных пробегов ионов. Определены параметры потенциала взаимодействия ионов Bi, Pb, Au, Yb, Er, Eu, Cs, Xe, Sn, Rb, Kr, Ga и Cu с атомами углерода и бора.

При аналитическом описании и численном моделировании движения ионов низких и средних энергий в веществе важно осуществить правильный выбор потенциала межатомного взаимодействия. Потенциал межатомного взаимодействия должен адекватно описывать процесс упругого рассеяния и быть достаточно простым для эффективности практического применения. В работе [1] предложен модельный потенциал взаимодействия, который в принципе отвечает этим требованиям. Он записывается в форме экранированного кулоновского потенциала и имеет следующий вид:

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \begin{cases} 1 - r/a, & r \le a, \\ 0, & r > a, \end{cases}$$
(1)

где Z_1, Z_2 — соответственно заряд ядра иона и атома мишени; r — расстояние между сталкивающимися частицами; a — радиус экранирования.

Используется предположение о зависимости радиуса экранирования от энергии иона, обеспечивающее адекватное наблюдаемому в экспериментах поведение тормозной способности ионов в упругих столкновениях во всем диапазоне энергий,

$$a = a_{TF} \varepsilon^{-1/4} / \beta. \tag{2}$$

Здесь $a_{TF} = 0.8853a_0/(Z_1^{2/3} + Z_2^{2/3})^{1/2}$, е — заряд электрона, a_0 — боровский радиус. Приведенная энергия ε связана с энергией ионов E соотношением $\varepsilon = Em_2a_{TF}/(Z_1Z_2e^2(m_1+m_2))$, где m_1, m_2 — масса иона и атома мишени соответственно. Параметр β , входящий в выражение (2), рассматривается как подгоночный.

Целью данной работы является создание метода определения параметра β для конкретных пар ион-мишень из сопоставления теоретических и экспериментальных значений проективных пробегов ионов в веществе.

Тормозная способность ионов для потенциала взаимодействия (1) с радиусом экранирования в форме (2), согласно работе [1], имеет следующий вид:

$$s_n(\varepsilon) = \frac{\sqrt{\varepsilon}}{\beta^2} f(X(\varepsilon)),$$
 (3)

где
$$f(X) = X[(1+X)\ln(1+1/X) - 1],$$

 $X(\varepsilon) = \frac{\beta^2}{4(\varepsilon^{3/2} + \beta\varepsilon^{3/4})}.$

На рис. 1 представлены рассчитанные по формуле (3) зависимости тормозных способностей ионов $s_n(\varepsilon)$, соответствующие трем различным значениям β . Из рис. 1 следует, что при значниях энергии $\varepsilon > 2$ тормозная способность ионов слабо зависит от величины β . Следовательно, для определения параметра β из сопоставления эксперимента и теории наиболее значимыми являются результаты, полученные при энергиях ионов $\varepsilon \leq 2$.

Расчет проективных пробегов ионов будем проводить с использованим результатов работы [2], в которой упругое рассеяние ионов рассматривалось в приближении потенциала взаимодействия (1), а неупругое рассеяние рассматривалось в приближении непрерывного замедления с тормозной способностью $s_n(\varepsilon) = k\sqrt{\varepsilon}$, где k — безразмерный параметр. При расчете проективного пробега учитывается пороговый характер торможения ионов, согласно которому остановка иона в веществе происходит, когда его энергия ε становится меньше пороговой энергии ε_{th} . Пороговая энергия ε_{th} определяется через энергию смещения атомов в веществе E_d аналогично работе [3]. В рамках этих приближений, согласно [2], проективный пробег ионов $R_p(\varepsilon)$ может быть представлен в следующем виде:

$$\begin{split} R_p(\varepsilon) &= \tilde{R}_p(\varepsilon) - \mu_{\rm th}(\varepsilon) \cdot \tilde{R}_p(\varepsilon_{\rm th}), \\ \tilde{R}_p(\varepsilon) &= \lambda_0(\varepsilon) \sum_{i=0}^N b_i \varepsilon^{i/2}, \end{split} \tag{4}$$

где

$$\lambda_0(\varepsilon) = rac{eta^2 \sqrt{arepsilon}}{n\pi a_{TH}^2 (1+Q/2)};$$

n — концентрация атомов мишени; $Q = \gamma k \beta^2$; $\gamma = 4m_1m_2/(m_1 + m_2)^2$; $\mu_{\rm th}$ — среднее значение косинуса направляющего угла движения иона в момент, когда его энергия становится меньше пороговой энергии $\varepsilon_{\rm th}$.

Рис. 1. Тормозная способность ионов для модельного потенциала (1) с радиусом экранирования (2) при $\beta = 0.5$ (1), 0.6 (2), 0.7 (3).

При значениях энергии $\varepsilon \leq 2$, согласно [2], в представлении (4) можно ограничиться числом N = 6, относительная погрешность расчета проективного пробега ионов в этом случае не превысит 0.5%. В работе [2], величина $\mu_{\rm th}$ рассчитывалась методом Монте-Карло. В данной работе для расчета величины $\mu_{\rm th}$ предлагается выражение, аппроксимирующее результаты из [2],

$$\mu_{\rm th}(\varepsilon) = \left[1 + \left(0.16 + 1.6\frac{m_2}{m_1} + 3.65\left(\frac{m_2}{m_1}\right)^2\right)\varepsilon^{0.25}\right]^{-1}.$$
 (5)

Дополнительная погрешность расчета проективных пробегов, обусловленная использованием μ_{th} в форме (5), вместо значений μ_{th} , полученных методом Монте-Карло, не превышает 0.1% в относительной мере и 0.5 Å в абсолютной мере для всего дипазона энергий.

Коэффициенты b_i , входящие в разложение (4), определяются из решения линейной системы уравнений с Nнеизвестными

$$F_j + \sum_{i=1}^N b_i \psi_{i,j} = 0, \quad j = 1 \dots N,$$
 (6)

где

$$F_{i} = \int_{0}^{\varepsilon_{\max}} (\lambda_{0} + b_{0}(L(\lambda_{0}) - \lambda_{0})) \left(L(\lambda_{0} \cdot \varepsilon^{i/2}) - \lambda_{0} \cdot \varepsilon^{i/2} \right) d\varepsilon,$$

$$\psi_{i,j} = \int_{0}^{\varepsilon_{\max}} \left(L(\lambda_0 \cdot \varepsilon^{i/2}) - \lambda_0 \cdot \varepsilon^{i/2} \right) \left(L(\lambda_0 \cdot \varepsilon^{j/2}) - \lambda_0 \cdot \varepsilon^{j/2} \right) d\varepsilon_{j,j}$$

$$\begin{split} L(f) &= \int_{0}^{\varepsilon} p_{e}(\varepsilon \to \varepsilon'') \int_{0}^{\varepsilon''} f(\varepsilon') \mu(\varepsilon'', \varepsilon') \\ &\times p_{n}(\varepsilon'' \to \varepsilon') d\varepsilon' d\varepsilon'', \\ b_{0} &= \frac{2+Q}{Q+\gamma(1+m_{2}/m_{1})/2}, \\ \mu(\varepsilon'', \varepsilon') &= \frac{1}{2} \left[\left(1 - \frac{m_{2}}{m_{1}} \right) \sqrt{\frac{\varepsilon''}{\varepsilon'}} + \left(1 + \frac{m_{2}}{m_{1}} \right) \sqrt{\frac{\varepsilon'}{\varepsilon''}} \right], \\ p_{e}(\varepsilon \to \varepsilon'') &= \frac{1}{\varepsilon Q} \cdot \left(\frac{\varepsilon''}{\varepsilon} \right)^{\frac{1}{2}-1}, \quad \varepsilon'' \leq \varepsilon, \\ p_{n}(\varepsilon'' \to \varepsilon') &= \frac{\gamma X(\varepsilon'') [X(\varepsilon'') + 1]}{\varepsilon'' [\gamma X(\varepsilon'') + (1 - \varepsilon'/\varepsilon'')]^{2}} \\ &\times \begin{cases} 1 & \text{при} \quad (1 - \gamma)\varepsilon'' \leq \varepsilon' \leq \varepsilon'', \\ 0 & \text{при} \quad \varepsilon > \varepsilon'', \varepsilon' < (1 - \gamma)\varepsilon''. \end{cases} \end{split}$$

Кратко поясним физический смысл функций, входящих в (6). Функция $p_e(\varepsilon \to \varepsilon'')$ определяет плотность вероятности изменения энергии иона при неупругом торможении от значения ε до ε'' ; $p_n(\varepsilon'' \to \varepsilon')$ определяет плотность вероятности изменения энерии иона в упругом столкновении от значения ε'' до ε' ; $\mu(\varepsilon'', \varepsilon')$ косинус угла рассеяния иона в упругом столкновении при изменении энергии иона от значения ε'' до ε' . Величина ε_{max} определяет максимальное значение диапазона изменения энергий ионов, для которого рассчитываются проективные пробеги.

Для выбранной пары ион-мишень, согласно формулам (4)–(6), проективный пробег зависит от параметра β , определяющего процесс упругого рассеяния ионов, и параметра k, определяющего неупругое торможение ионов. Предполагая эти параметры неизвестными, попытаемся определить их из сравнения экспериментальных и теоретических значений проективных пробегов ионов. В качестве меры отклонения экспериментальных и теоретических значений введем невязку $S(\beta, k)$ следующим образом:

$$S(\beta, k) = \sum_{i=1}^{N_{\text{exp}}} \left[\frac{R_p^{\text{exp}}(\varepsilon_i) - R_p(\beta, k, \varepsilon_i)}{\sigma_i} \right]^2, \qquad (7)$$

где $R_p^{\exp}(\varepsilon_i)$ и σ_i — экспериментальные значения соответственно проективных пробегов и среднеквадратичной погрешности измерения проективных пробегов при энергии ионов ε_i ; N_{\exp} — число экспериментальных точек; $R_p(\beta, k, \varepsilon_i)$ — теоретические значения проективных пробегов (в отличие от (4) в обозначении явным образом указаны праметры β и k).

Величины β и *k* будем определять из условия минимальности невязки $S(\beta, k)$. В качестве экспериментальных значений проективных пробегов будем использовать результаты работы [4]. Величина σ_i , согласно [4], определяется соотношением $\sigma_i = \max(14 \text{ Å}; 0.05 R_p^{\text{exp}}(\varepsilon_i)).$

Рис. 2. Зависимость нормированной невязки от параметра *k*. Пары ион-мишень: *1* — Ga–C, *2* — Rb–B, *3* — Au–C, *4* — Cu–C.

Для того чтобы вместе с определением параметров β и *k* оценить и погрешность их определения, примем следующие допущения. Предположим, что отклонение экспериментальных результатов от теоретических носит случайный характер, а случайные величины, являющиеся разницей экспериментальных и теоретических значений пробегов ионов с энергией ε_i , распределены по нормальному закону с нулевым значением математического ожидания и с дисперсией, равной σ_i^2 . В этом случае, согласно [5], величина *S*, определяемая формулой (7), является случайной величиной, подчиняющейся распределению χ^2 с числом степеней свободы, равным ($N_{\rm exp} - 1$). Плотность вероятности для распределения имеет следующий вид:

$$p(S) = \frac{1}{2^{(N_{\exp}-1)/2} \Gamma((N_{\exp}-1)/2)} S^{(N_{\exp}-3)/2} \cdot e^{-S/2}, \quad (8)$$

где $\Gamma(x)$ — гамма-функция.

Математическое ожидание случайной величины S равно $(N_{\exp} - 1)$. Вероятность P того, что случайная величина S находится в интервале $0 \le S \le S_P$, определяется очевидным соотношением

$$\int_{0}^{S_{P}} p(S)dS = P.$$
(9)

Для оценки диапазона допустимых изменений величин β и k используется неравенство $S(\beta, k)/S_P \leq 1$. При заданном значении P величина S_P определяется из (9).

На рис. 2 представлены зависимости $S(\beta_{opt}, k)/S_P$ от параметра k для различных пар ион-мишень при P = 0.95. Величина β_{opt} определяется из условия достижения минимума невязки при данном значении k и также

зависит от k. Зависимости β_{opt} от k для соответствующих рис. 2 парам ион-мишень представлены на рис. 3.

Из рис. 2 следует, что для пар Си-С, Аu-С, Rb-В величина $S(\beta_{opt}, k)$ не выходит за уровень допустимых значений $S_{0.95}$ при изменении параметра k в пределах $0 \le k \le 0.1$. Для пары Au-C проективные пробеги измерены в диапазоне энергий $0.0127 \le \varepsilon \le 0.127$. В этом диапазоне энергий торможение ионов в основном происходит в процессе упругих соударений с атомами мишени, процессом неупругого торможения ионов можно пренебречь. Как следствие, для этой пары функция $S(\beta_{opt}, k)/S_P$ практически не зависит от параметра k. Для пары Ga–C функция $S(\beta_{opt}, k)/S_P$ имеет минимум, который выражен более явно, чем в других вариантах. Для этой пары экспериментальные результаты получены в диапазоне энергий $0.142 \le \varepsilon \le 2.12$, что отвечает бо́льшим, чем у других пар, значениям энергий. Соответственно и значимость процессов неупругого торможения в этом случае максимальна. Параметр β_{opt} , как следует из рис. 3, увеличивается с ростом к практически линейно. Самая слабая зависимость β_{opt} от k наблюдается для пары Au-C. Следовательно, можно ожидать, что и точность определения параметра β для этой пары будет выше, чем для других.

Представленные на рис. 2,3 результаты показывают, что из анализа экспериментальных данных по проективным пробегам ионов с энергиями $\varepsilon \leq 2$ для параметра kможно получить только грубую оценку. Таким образом, для того, чтобы однозначно определить параметр β на основе этих экспериментальных данных, необходимо использовать независимые экспериментальные или теоретические результаты для оценки параметра k. Неравенство $S(\beta_{\text{орt}}, k)/S_P < 1$ выполняется при изменении k в широком диапазоне значений. Следовательно, тре-

Рис. 3. Зависимость параметра β_{opt} от *k*. Пары ион-мишень: *I* — Ga-C, *2* — Rb-B, *3* — Au-C, *4* — Cu-C.

Рис. 4. Зависимость нормированной невязки от параметра *β*. Пары ион-мишень: *1* — Ga-C, *2* — Rb-B, *3* — Au-C. Кружки — доверительный интервал изменения параметра *β*.

бования к точности определения парамметра *k* невысоки. Поэтому ограничимся предложенным Линдхардом и часто используемым для оценок (см., например, [6,7]) выражением

$$k = \xi \frac{0.0793 Z_1^{1/2} Z_2^{1/2}}{(Z_1^{2/3} + Z_2^{2/3})^{3/4}} \frac{(m_1 + m_2)^{3/2}}{m_1^{3/2} m_2^{1/2}}.$$
 (10)

Предполагается, что параметр ξ может принимать значения в промежутке $1 \le \xi \le 2$. Значения m_1, m_2 в (10) выражаются в атомных единицах массы. Анализ всех экспериментальных результатов из работы [4] (19 пар ион-мишень), аналогичный представленному на рис. 2, 3, показал, что выражение (10) при значении $\xi = 1$ является наилучшей оценкой параметра k для этих условий. Параметр k, рассчитываемый по формуле (10) при значении $\xi = 1$, будем обозначать как k^* . Так, для представленной на рис. 2 пары Ga-C получаем $k^* = 0.0573$, для Rb–B $k^* = 0.0541$. Соответствующие значения $S(\beta_{\text{opt}}, k^*)/S_P$, как видно из рис. 2, при этом не сильно отличаются от минимальных. В дальнейшем параметр β будем определять из условия минимальности функции $S(\beta, k^*)/S_P$. Для оценки диапазона допустимых изменений величины β используется неравенство $S(\beta, k^*)/S_P \leq 1$. Зависимости нормированной невязки $S(\beta, k^*)/S_P$ от β для трех пар ион–мишень при P = 0.95представлены на рис. 4. Внешне эти зависимости подобны квадратичным параболам и имеют ярко выраженный минимум, положение которого и определяет искомый параметр β . Точки пересечения приведенных кривых на уровне $S(\beta, k^*)/S_P = 1$ интерпретируются как крайние допустимые значения параметра β для соответствующих пар ион-мишень. Таким образом, для пары Ga-C допустимые значения параметра β с вероятностью P = 0.95находятся в диапазоне $0.637 \le \beta \le 0.696$, для пары Au–C — $0.537 \leq \beta \leq 0.575$. Оцениваемая таким образом для различных пар ион-мишень относительная погрешность определения параметра β изменяется от 3.5 до 5.5%. Так как оценка погрешности параметра β носит приближенный характер, то будем в среднем полагать ее равной 5%. На рис. 5 проводится сравнение экспериментальных значений проективных пробегов ионов Аи в углероде с теоретическими, рассчитываемыми по формулам (4)-(6), для трех различных значений параметра В. Из рис. 5 видно, что все экспериментальные точки попадают в створ кривых, отвечающих граничным значениям параметра β . При значении параметра $\beta = 0.556$, соответствующего минимуму функции $S(\beta, k^*)/S_P$, эксперимент и теория совпадают в пределах погрешности экспериментальных измерений.

Параметры β , определенные для 19 пар ион-мишень, представлены в таблице. С учетом оцененной погрешности приведенные значения округлены до второй значащей цифры. Из таблицы видно, что для всех ионов, за исключением Ga и Cu, параметры β близки и лежат в диапазоне 0.53 $\leq \beta \leq 0.59$. Приведенные в таблице значения β были использованы для расчета пробегов ионов методом Монте-Карло по программе, алгоритм которой описан в работе [1]. В численных расчетах методом Монте-Карло определялись проективные пробеги ионов R_p и среднеквадратичные отклонения проективных пробегов ΔR_p . Рассматривалось 10⁵ историй. Относительная погрешность полученных результатов при этом,

Рис. 5. Энергетическая зависимость проективного пробега ионов Au в углероде. Кружки с указанной погрешностью — эксперимент [4]. Кривые — расчет по формулам (4)–(6) при $\beta = 0.556$ (сплошная кривая), 0.537 (штриховая кривая), 0.575 (пунктир).

Ион	Мишень	β	E, keV	Экспе	римент [4]	Расчет Монте-Карло		Ион	Мишень	β	E, keV	Эксперимент [4]		Расчет Монте-Карло	
				$R_p, \text{\AA}$	$\Delta R_p, Å$	$R_p, \text{\AA}$	$\Delta R_p, \text{\AA}$					$R_p, \text{\AA}$	$\Delta R_p, \text{\AA}$	$R_p, \text{\AA}$	$\Delta R_p, \text{\AA}$
Bi	В	0.54	20	180	30	177	32	Cs	В	0.55	20	165	45	164	36
			50	285	60	302	53				50	285	65	290	61
			100	440	90	459	78				100	450	110	465	93
	~		300	1050	170	965	153		~		300	1180	262	1126	201
	С	0.53	15	140	27	146	28		С	0.57	20	170	43	176	41
			40	245	37	256	48				50	290	69 105	309	68
			80	390	60	386	70				100	490	105	491	104
DL	р	0.55	150	615	115	5/3	101	V.	C	0.55	200	820	152	824	164
PD	В	0.55	20	1/5	30 70	185	33 55	ле	C	0.55	20	200	30 60	200	38
			100	310 450	/0	512 474	22 91				100	290	00 100	290	04
			300	1050	200	4/4	157				300	1200	230	1108	210
	C	0.56	20	205	200	100	37	Sn	C	0.58	300	235	230 45	228	54
	C	0.50	50	315	60	322	60	511	C	0.50	50	310	65	316	73
			100	495	91	488	88				100	515	100	509	112
			200	790	137	763	132				300	1300	260	1241	241
Au	В	0.57	20	200	50	193	36	Rb	В	0.58	20	170	45	172	44
			50	330	70	328	59				50	325	80	325	79
			100	470	90	501	87				100	565	150	564	127
			300	1100	172	1056	171				300	1550	320	1607	311
	С	0.56	20	197	25	187	37		С	0.59	30	210	70	233	62
			50	315	47	318	61				50	330	90	332	85
			100	460	80	484	89				100	590	160	568	136
			150	640	121	627	112				200	1077	270	1057	230
Yb	В	0.56	20	180	40	180	36	Kr	С	0.58	30	206	60	227	61
			50	310	60	310	59				50	320	90	326	84
			100	480	90	479	88				100	610	155	562	135
	~		300	1100	190	1053	176	~	~		150	870	220	805	183
	С	0.55	20	176	35	175	36	Ga	С	0.67	20	216	52	222	65
			50	295	59	300	60				50	415	110	423	115
			100	490	95 150	463	89				100	/30	200	/40	185
E.	C	0.50	200	800	150	120	13/	C.	C	0.00	300	2000	500	2111	442
Er	C	0.58	10 50	155	48	129	28 67	Cu	C	0.08	50 50	280 420	90 120	301 440	88 122
			50 75	421	90	329 421	8/				100	430	215	783	200
			100	500	105	506	99				200	1547	400	1509	342
Eu	С	0.55	30	220	45	215	46		l	l	200	1577	100	1507	512
24		0.00	50	320	64	293	62								
			100	458	90	458	93								
			200	729	140	752	144								

Сравнение экспериментальных пробегов ионов с результатами численных расчетов методом Монте-Карло

согласно [1], не превышает 0.3%. Из таблицы видно, что результаты численных расчетов для R_p и ΔR_p хорошо согласуются с экспериментальными. Максимальное абсолютное отклонение экспериментальных и теоретических значений ΔR_p составляет 61 Å для пары Cs–B при энергии ионов 300 keV. Относительное отклонение в этом случае равно 23%. Напомним, что определение параметров β проводилось с использованием экспериментальных результатов только для проективных пробегов R_p . Совпадение значений ΔR_p , полученных в результате численных расчетов, с экспериментальными значениями подтверждает правильность определения параметров β

ним, что определение пальзованием эксперименя проективных пробегов $\Delta R_p = \sqrt{\frac{m_2}{m_1}} \frac{0.846}{1 + 0.473\sqrt{\varepsilon}}.$

веществе.

Относительная погрешность определения $\Delta R_p/R_p$ по формуле (11) для ионов с $m_1/m_2 > 5$ в диапазоне энергий 0.01 < ε < 2.5 не превышает 2%. Данное

для рассмотренных пар ион-мишень. Кроме того, это

служит дополнительным аргументом в пользу выбора потенциала (1) для моделирования движения ионов в

Результаты численных расчетов хорошо описываются

(11)

следующей аппроксимирующей зависимостью:

соотношение может быть использовано для оценки величины ΔR_p при известных значениях R_p , полученных в эксперименте или рассчитанных теоретически, например, с использованием формул (4)–(6).

В заключение перечислим основные результаты работы. Предложен метод определения параметров модельного потенциала взаимодействия из сравнения экспериментальных и теоретических значений проективных пробегов ионов в аморфном веществе. Для 19 пар ионмишень определены параметры модельного потенциала, с использованием которых проведены численные расчеты пробегов ионов методом Монте-Карло. Результаты численных расчетов хорошо согласуются с экспериментальными не только для проективных пробегов ионов R_p , но и для среднеквадратичных отклонений проективных пробегов ΔR_p , что свидетельствует об удачном выборе модельного потенциала и подтверждает правильность определения его параметров.

Список литературы

- Шейкин Е.Г. Новый модельный потенциал для описания движения заряженных частиц в веществе. ЖТФ. 1999. Т. 69. Вып. 5. С. 1–6.
- [2] Шейкин Е.Г. ЖТФ. 1999. Т. 69. Вып. 2. С. 93-97.
- [3] Шейкин Е.Г. // ЖТФ. 1997. Т. 67. Вып. 10. С. 16-20.
- [4] Grande M., Zawislak F.C., Fink D., Behar M. // Nucl. Instr. and Meth. 1991. Vol. B61. N 3. P. 282–290.
- [5] Худсон Д. Статистика для физиков. М.: Мир, 1967. 244 с.
- [6] Кумахов М.А., Комаров Ф.Ф. Энергетические потери и пробеги ионов в твердых телах. Минск: изд-во БГУ, 1979. 320 с.
- [7] Muramatsu H., Ishii H., Tanaka E. et al. // Nucl. Instr. and Meth. 1998. Vol. B134. N 1. P. 126–135.