Стимулирование люминесценции варизонных полупроводников Al_xGa_{1-x}As

© К. Пожела, Р.-А. Бендорюс, Ю. Пожела, А. Шиленас

Институт физики полупроводников, 2600 Вильнюс, Литва

(Получена 17 мая 2000 г. Принята к печати 17 мая 2000 г.)

Исследована стимуляция фотолюминесценции в варизонном полупроводнике Al_xGa_{1-x}As. Показано, что стимуляция внешней подсветкой позволяет повысить внутренний квантовый выход люминесценции и задать направление стимулированному потоку излучения. Предложен метод определения внутреннего квантового выхода спонтанной люминесценции.

1. Введение

Детекторы ионизирующих радиаций со световым откликом на основе варизонных $Al_xGa_{1-x}As$ -структур обладают многими преимуществами в сравнении с кремниевыми и GaAs-детекторами с токовым откликом [1,2]. Al_xGa_{1-x}As-структуры со световым откликом позволяют преобразовать картину ионизирующей радиации в световое изображение с большим пространственным разрешением деталей картины, без необходимости создавать матрицу точечных детекторов со сложной системой передачи и считывания зарядовой информации, как это имеет место в случае использования детекторов с токовым откликом [3]. Детектор со световым откликом не требует источника питания. В отличие от используемого при создании детекторов с токовым откликом высокоомного материала (GaAs, Si, Ge) с очень высокими требованиями к чистоте и бездефектности, основу детекторов со световым откликом составляет низкоомный легированный $Al_xGa_{1-x}As$.

Однако эффективность сбора информации о количестве генерированных внешней радиацией в объеме детектора электронно-дырочных пар в детекторах с оптическим откликом оказывается ниже, чем в детекторах с токовым откликом. В последних, благодаря большому совершенству и чистоте материала детектора, обеспечивается высокое время жизни неравновесных электроннодырочных пар. Это позволяет при приложении достаточно большого напряжения к детектору (обычно несколько сот вольт) с малыми потерями (почти стопроцентно) собрать все заряды, генерируемые внешней радиацией в объеме детектора.

В детекторах со световым откликом сбор информации о генерируемых в объеме электронно-дырочных парах осуществляется оптическим путем: фотоны, излучаемые при рекомбинации электронно-дырочных пар в объеме кристалла, выходят через широкозонную поверхность варизонного полупроводника. Эффективность оптического отклика (люминесценции кристалла) определяется главным образом двумя параметрами: внутренним квантовым выходом η и эффективностью вывода светового излучения из кристалла γ . Величина внутреннего квантового выхода η определяется тем, какая доля генерированных в объеме электронно-дырочных

пар рекомбинирует излучательно:

$$\eta = \frac{1}{1 + \tau_r / \tau_{nr}},\tag{1}$$

где τ_r и τ_{nr} — времена жизни электронно-дырочных пар при излучательной и безызлучательной рекомбинации соответственно. В легированных кристаллах $Al_xGa_{1-x}As$ величина безызлучательного времени жизни весьма мала: $\tau_{nr} \approx 10^{-9}$ с. Для повышения квантового выхода варизонный полупроводник $Al_xGa_{1-x}As$ легируется акцепторной примесью Zn^+ , что позволяет увеличить скорость излучательной рекомбинации до уровня безызлучательной. Таким путем удается повысить η до 60-80%. Дальнейшего уменьшения τ_r и тем самым повышения внутреннего квантового выхода детектора η можно достичь путем стимулирования излучательной рекомбинации внешним источником света.

Стимулирование излучательной рекомбинации также позволяет решать проблему вывода излучения из кристалла наружу. Из-за высокого коэффициента преломления $Al_xGa_{1-x}As$ угол полного внутреннего отражения света от границы GaAs/воздух составляет лишь 16°. В результате лишь очень небольшая доля генерируемых в кристалле фотонов выходит наружу ($\gamma \approx 2-3\%$). Однако коэффициент выхода γ можно многократно повысить, если собрать фотоны, генерируемые в кристалле, в телесный угол 16° и тем самым избежать полного внутреннего отражения фотонов от поверхности кристалла. Этого можно достичь путем стимулирования излучательной рекомбинации перпендикулярным к поверхности раздела внешним пучком света. Можно показать, что при стимулировании рекомбинационного излучения стимулированный фотон обладает той же частотой, фазой, поляризацией и направлением распространения, что и стимулирующий фотон [4]. Параллельный пучок световых лучей с углом расхождения меньше 16° будет стимулировать излучательную рекомбинацию в этот угол, что обеспечит высокий выход излучения из кристалла.

В настоящей статье рассматриваются возможности повышения внутреннего и внешнего квантового выхода фотолюминесценции Al_xGa_{1-x}As-структуры путем стимулирования излучательной рекомбинации дополнительным внешним источником света.

2. Стимулирование излучения

Рассмотрим на основе простой двухуровневой модели излучение из полупроводниковой пластины толщиною L при возбуждении в ней каким-либо ионизирующим источником в единице объема N_2 электронно-дырочных пар. Положим энергию между двумя уровнями и соответственно энергию излучаемых фотонов $\hbar\omega_{21}$ близкой к ширине запрещенной зоны в GaAs, 1.5 эВ, и в тепловом равновесии будем полагать концентрацию электронов на верхнем втором уровне n_{20} равной нулю, а на нижнем — равной n_{10} .

В стационарном случае скорость генерируемых ионизирующим излучением электронно-дырочных пар равна скорости их рекомбинации,

$$\left(\frac{dN_2}{dt}\right)_{gen} = N_2 \left(\frac{1}{\tau_{nr}} + \frac{1}{\tau_r}\right) + B(N_2 - N_1)I_{\nu 21}, \quad (2)$$

где τ_{nr} и τ_r — времена релаксации безызлучательной и излучательной спонтанной рекомбинации соответственно, $I_{\nu 21}$ — излучение с энергией фотона $\hbar\omega_{21}$ и B — коэффициент Эйнштейна, определяющий скорость стимулированной рекомбинации,

$$B = \left(\frac{c}{n_r}\right)^2 \frac{1}{8\pi\nu_{21}^2\tau_r}.$$
(3)

Здесь c/n_r — скорость света в среде с коэффициентом преломления n_r .

Время релаксации для стимулированной рекомбинации равно

$$\tau_i^{-1} = BI_{\nu 21}.$$
 (4)

В случае GaAs $\nu_{21} \approx 4 \cdot 10^{14} \,\mathrm{c}^{-1}$, $n_r = 3.54$ и $B\tau_r \approx 0.54 \,\mathrm{cm}^3/\mathrm{c}$. Полагая скорость генерации ионизирующим излучением равной BN_1I_1 , где I_1 — интенсивность ионизирующего излучения, получим, согласно (2)–(4), для числа частиц на втором уровне при наличии стимулирования N_1^i и в его отсутствие N_2 равенство

$$N_2 \approx N_2^i \left(1 + \frac{I_{\nu 21}}{I_1} \right). \tag{5}$$

Стимулирующее излучение не изменяет числа электронно-дырочных пар, если его интенсивность много меньше интенсивности ионизирующего излучения.

При $I_1 \gg I_{\nu 21}$ отношение амплитуды стимулированного излучения $I_m^i \sim N_2^i \eta_i / \tau_i$ к амплитуде спонтанного $I_m^{sp} \sim N_2 \eta / \tau_r$ равно

$$\frac{I_m^i}{I_m^{sp}} = \frac{\eta_i \tau_r}{\eta \tau_i},\tag{6}$$

где

$$\eta_i = \frac{1}{1 + \tau_i / \tau_{nr}}$$

определяет долю электронно-дырочных пар, участвующих в излучательной рекомбинации при наличии стимулирования, а η — в его отсутствие (см. уравнение (1)). Соотношение (6) показывает, что амплитуда

Физика и техника полупроводников, 2000, том 34, вып. 11

интенсивности излучения может быть значительно увеличена путем стимулирования скорости рекомбинации электронно-дырочных пар.

Определим интенсивность люминесценции пластины полупроводника толщиною L при генерации ионизирующим излучением в единице ее объема N_2 электроннодырочных пар.

Бегущий поток числа фотонов $N_{\nu 21}$ с энергией $\hbar\omega_{21}$ через единичную поверхность в 1 с в направлении *z*, перпендикулярном к поверхности полупроводниковой пластины, равен

$$J_{21} = \frac{c}{n_r} N_{\nu 21} \hbar \omega_{21}. \tag{8}$$

Изменение плотности потока фотонов на интервале *dz* вследствие поглощения и стимулирования излучения равно

$$dJ_{21} = kJ_{21}dz, (9)$$

где коэффициент стимулирования и поглощения излучения

$$k = \frac{n_r}{c} B(N_2 - N_1).$$
(10)

Отметим, что $N_1 = n_{10} - N_2$. Отрицательная часть коэффициента *k* соответствует поглощению излучения —

$$k_a = -\frac{n_r}{c} B n_{10}, \tag{11}$$

а положительная часть

$$k_i = \frac{n_r}{c} B(2N_2) \tag{12}$$

отражает как эффект стимулирования излучения, так и эффект уменьшения поглощения стимулирующего излучения при генерации N_2 электронно-дырочных пар. Интенсивность "первичного" излучения, подходящего к поверхности пластины L от плоскости с координатой z_1 , равна

$$j(z_1)e^{k(L-z_1)}dz_1.$$
 (13)

Полный поток фотонов на поверхности L пластины равен сумме потоков от всех плоскостей z_1 в пластине:

$$I_L = \int_{0}^{L} j(z_1) dz_1.$$
 (14)

Полагая, для простоты, генерацию электронно-дырочных пар N_2 однородной по толщине пластины, получим для интенсивности спонтанной люминесценции пластины

$$I_{L}^{sp} = j_{spo} \frac{e^{kL} - 1}{k},$$
 (15)

где

(7)

$$i_{spo} = \frac{N_2}{\tau_r} \hbar \omega_{21} \frac{c}{n_r}.$$
 (16)

При стимулировании внешним излучением j_{021} , падающим на кристалл в плоскости z = 0, поток в плоскости z_1 равен

$$j(z_1) = j_{spo} + j_{021} e^{k' z_1}$$
(17)

и соответственно интенсивность стимулированной люминесценции пластины

$$I_L^i = I_L^{spi} + j_{021} L e^{k^i L}.$$
 (18)

Здесь индексы *i* при I_L^{spi} и k^i соответствуют изменению N_2 на N_2^i (см. уравнение (5)) при стимулировании люминесценции.

Как видим, стимулированная люминесценция состоит из двух составляющих: спонтанной люминесценции I_L^{spi} с изменившейся концентрацией $N_2 \rightarrow N_2^i$ и модулированного поглощения стимулирующего излучения.

Отметим, что спонтанная люминесценция является изотропной и излучает в телесный угол 4 π . Лишь малая доля излучения, попадающая в телесный угол

$$\Omega(\theta) = 4\pi \sin^2 \frac{\theta}{2} \left(1 + \cos^2 \frac{\theta}{2} \right), \quad \sin \theta = \frac{1}{n_r}, \quad (19)$$

где θ — угол полного внутреннего отражения, выходит из кристалла.

Стимулирующее излучение является направленным и способствует тому, что стимулированное излучение выводится из кристалла, будучи направленным в телесный угол $\Omega(\theta)$. Если стимулирующее излучение направлено в область углов вне $\Omega(\theta)$, то оно вместе со стимулированной им эмиссией вообще не выйдет из кристалла.

Экспериментальное определение возможностей стимулирования люминесценции в кристаллах Al_xGa_{1-x}As

Поскольку стимулированное излучение из кристалла выходит на фоне стимулирующего излучения, для экспериментального их разделения использовано синхронное детектирование. На рис. 1 показана принципиальная схема эксперимента. В качестве источника генерации электронно-дырочных пар использован аргоновый лазер ($\lambda = 488$ нм), излучение которого модулировалось прерывателем, задающим частоту синхронизации детектирования сигнала люминесценции (~ 130 Гц). Для определения спектра интенсивности люминесценции использовался монохроматор МДР-12-ЛОМО и фотоумножитель ФЭУ-157, чувствительный в инфракрасной области люминесценции из GaAs.

Таким образом, измерялась промодулированная составляющая люминесценции, исключающая постоянную составляющую стимулирующего излучения.

На рис. 1 показана схема, когда носители генерировались лазерным лучем в слое толщиной ~ 1 мкм с узкозонной стороны кристалла и с этой же стороны наблюдалась люминесценция. С помощью лампы накаливания со стабилизированным питанием создавалось стимулирующее излучение с непрерывным спектром в интервале 600–900 нм, которое направлялось перпендикулярно к поверхности широкозонной стороны кристалла.

Рис. 1. Схема эксперимента. Фотолюминесценция, возбужденная промодулированным лучем лазера L (волнистая стрелка), синхронно детектируется детектором — спектрометром D. Немодулированная подсветка белым светом от источника S(прямая стрелка) стимулирует излучательные переходы в варизонной $Al_xGa_{1-x}As$ -пластине. Трапецией на пластине обозначено изменение ширины запрещенной зоны: короткая вершина соответствует узкозонной, а широкое основание — широкозонной стороне варизонного кристалла.

Благодаря варизонной структуре кристалла стимулирующее излучение, не поглощаясь, проходило к узкозонной области, где из белого спектра излучения автоматически выбирались энергии фотонов, соответствующие излучательным переходам неравновесных электронов. Таким образом стимулировались излучательные переходы.

Вследствие малости толщины области взаимодействия излучения с генерированными носителями, $L \approx 1$ мкм, можно положить $\tilde{k}L < 1$, где $\tilde{k} = B(\tilde{N}_2 - \tilde{N}_1)n_r/c$. Волнистой линией отмечены переменные составляющие коэффициента поглощения. Тогда, согласно (15) и (18), промодулированные переменные составляющие люминесценции, детектируемые синхронным детектором, равны

$$\tilde{I}^{sp} \approx \tilde{i}_{spo}L$$
 (20)

для спонтанного излучения и

$$\tilde{I}^i \approx j_{021} \mathrm{e}^{-k_a L} \tilde{k} L^2 + \tilde{j}^i_{spo} L \tag{21}$$

для стимулированной части излучения.

Благодаря большой величине коэффициента поглощения k_a (см. уравнение (11)) первый член в правой части уравнения (21) может оказаться малым в сравнении со вторым членом. Тогда

$$\frac{\tilde{I}^i}{\tilde{I}^{sp}} \approx \frac{\eta_i}{\eta}.$$
(22)

Из-за уменьшения ширины запрещенной зоны к поверхности варизонного кристалла поглощение стимулирующего излучения в области малых толщин L в красной области спектра уменьшается. При уменьшении k_aL возрастает вклад первого члена в правой части уравнения (21) в интенсивность стимулированного излучения. Это

Рис. 2. Спектры интенсивностей спонтанной (I^{sp}) и стимулированной (I^i) люминесценции $Al_xGa_{1-x}As$ -пластины и их отношение (I^i/I^{sp}) при конфигурации эксперимента, показанной на рис. 1. Кривая I_b показывает фоновое излучение при отсутствии возбуждения электронно-дырочных пар лазером.

приводит к соответствующему росту отношения интенсивностей стимулированного излучения к спонтанному.

На рис. 2 приведены экспериментальные результаты измерения спектров промодулированных составляющих спонтанной и стимулированной эмиссии для одного из образцов $Al_xGa_{1-x}As$ с переменным составом по толщине от x = 0 до x = 0.3. Толщина образца была d = 50 мкм. Результаты, полученные на этом образце, были типичными для целой серии образцов $Al_xGa_{1-x}As$ с различными градиентами состава по толщине и уровнями легирования. Образцы легировались акцептором Zn^+ до уровней $N_{Zn} > 10^{17}$ см⁻³. В нелегированных образцах люминесценция не наблюдалась.

Как и ожидалось, включение стимулирующей подсветки приводит к росту излучения в области спектральной линии спонтанного излучения. Этот рост соответствует увеличению квантового выхода η_i при росте интенсивности стимулирующей подсветки. При достаточно высокой интенсивности стимулирующей подсветки рост величины I^i в коротковолновой части полосы излучения стремится к насыщению, что означает $\eta_i \rightarrow 1$. Это имеет место для случая, показанного на рис. 2. Поэтому отношение $\tilde{I}^i/\tilde{I}^{sp}$ вблизи максимума линии излучения позволяет, согласно (22), оценить величину внутреннего квантового выхода $\eta \approx 0.7$. Отметим, что в красной части полосы излучения отношение $\tilde{I}^i/\tilde{I}^{sp}$ несколько выше (см. рис. 2), как это и следует из (21).

Синхронное детектирование позволило устранить из исследуемого излучения постоянную составляющую стимулирующего излучения. Фон излучения в отсутствие возбуждения лазером, но при наличии стимулирующей подсветки, был много ниже в сравнении как с величиной сигнала спонтанной люминесценции, возбуждаемой лазером, так и с величиной увеличения люминесценции при ее стимулировании (рис. 2). Правда, как это видно на рис. 2, в длинноволновой части спектра стимулированной люминесценции наблюдались значительные флуктуации интенсивности излучения, возрастающие с увеличением интенсивности подсветки. Эти флуктуации мы связывает с флуктуациями интенсивности стимулирующего сигнала. Они накладывали ограничение на величину интенсивности стимулирующей подсветки, используемой в эксперименте.

Интенсивность стимулированной люминесценции зависит от направления стимулирующей подсветки. Стимулирующее излучение, заполняющее внешний телесный угол $d\Omega$, после преломления на поверхности пластины полупроводника с высоким n_r попадает в узкий телесный угол внутри полупроводника

$$d\Omega(\theta) = \frac{d\Omega}{n_r^2}.$$
 (23)

Таким образом, стимулирующее излучение в полупроводнике всегда оказывается внутри телесного угла, соответствующего углу полного внутреннего отражения, что обеспечивает ему выход из кристалла. Чтобы обеспечить выход стимулированного излучения в телесный угол $d\Omega_{det}$, соответствующий угловой апертуре детектора люминесценции, падающее на пластину стимулирующее излучение должно быть сконцентрировано, согласно (23), в таком же внешнем телесном угле $d\Omega = d\Omega_{det}$.

На рис. 3 представлены зависимости спектров фотолюминесценции варизонного кристалла от направления параллельного пучка стимулирующего света. Угловая апертура объектива детектора люминесценции была менее 30°. Из рис. 3 видно, что при угле падения на поверхность кристалла $\varphi < 30^{\circ}$ в детектируемом выходном сигнале наблюдается ярко выраженная ком-

Рис. 3. Спектры усредненных экспериментальных значений интенсивностей люминесценции для двух структур $Al_xGa_{1-x}As$: a - x = 0.2, d = 55 мкм; b - x = 0.32, d = 70 мкм при различных направлениях потоков стимулирующей подсветки. Конфигурация измерений показана в обозначениях рис. 1. Цифры при обозначении источника подсветки *S* соответствуют углу направления потока подсветки относительно направления детектируемой люминесценции. Пунктирные кривые соответствуют спонтанной люминесценции в отсутствие подсветки.

понента стимулированной люминесценции. Однако при $\varphi > 30^{\circ}$ эта компонента исчезает, что свидетельствует о направленности действия стимулирующего потока на поток стимулированной люминесценции. Стимулированная часть люминесценции с узкозонной стороны кристалла полностью исчезает, если стимулирование люминесценции осуществлялось подсветкой с той же стороны. В этом случае стимулированное излучение направлялось от излучающей поверхности в глубь кристалла, где испытывало переизлучение со сдвигом спектра излучения в красную сторону (рис. 3).

4. Заключение

Показано, что стимулирование рекомбинации неравновесных электронно-дырочных пар в варизонном полупроводнике $Al_xGa_{1-x}As$ внешним излучением позволяет повысить внутренний квантовый выход фотолюминесценции. Это проявляется в росте интенсивности стимулированной люминесценции в $1/\eta$ раз по сравнению со спонтанной, что позволяет экспериментально определить величину внутреннего квантового выхода спонтанной рекомбинации электронно-дырочных пар η .

Показано, что стимулирующая подсветка задает направление стимулированному потоку излучения. Это позволяет направить поток в телесный угол, меньший угла полного внутреннего отражения, и вывести излучение из кристалла наружу.

Список литературы

- J. Požela, V. Jucienė, K. Požela. Nucl. Instr. Meth. A, 410, 111 (1998).
- [2] J. Požela, K. Požela, A. Šilėnas, V. Jasutis, L. Dapkus, V. Jucienė. Lithuanian J. Phys., **39**, 139 (1999).
- [3] J. Požela, K. Požela, A. Šilėnas, V. Jucienė, L. Dapkus, V. Jasutis, G. Tamulaitis, A. Žukauskas, R.-A. Bendorius. Nucl. Instr. Meth. A, 434, 169 (1999).
- [4] П. Дирак. Принципы квантовой механики (М., Физматиздат, 1960). [Пер. с англ.: Р.А.М. Dirac. The Principles of Quantum Mechanics (Oxford, Clarendon, 1958)].

Редактор В.В. Чалдышев

Stimulation of luminescence of graded-gap Al_xGa_{1-x}As semiconductors

K. Požela, R.-A. Bendorius, J. Požela, A. Šilėnas

Semiconductor Physics Institute, 2600 Vilnius, Lithuania

Abstract Stimulation of photoluminescence in graded-gap $Al_xGa_{1-x}As$ semiconductors is investigated. It is shown that the stimulation by an external light makes it possible to increase the internal quantum luminescence efficiency and to direct the stimulated light flow. A method for the internal quantum efficiency measurements is proposed.