Температурное поведение магнитооптических явлений в редкоземельном магнитном полупроводнике *y*-Dy₂S₃

© Б.Б. Кричевцов, Х.-Ю. Вебер*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Университет Дортмунда, 44221 Дортмунд, Германия

(Поступила в Редакцию 9 июня 2004 г.)

В области прозрачности кубического (класс симметрии T_d) магнитного полупроводника γ -Dy₂S₃ на длине волны $\lambda = 633$ nm в диапазоне температур $\Delta T = 25-294$ К исследованы температурные зависимости линейного по магнитному полю **В** эффекта Фарадея (ЭФ), невзаимного линейного двупреломления света (НД), связанного с проявлением магнитоиндуцированной пространственной дисперсии, и квадратичного по магнитному полю **В** эффекта Коттона–Мутона (ЭКМ). При понижении температуры величина ЭФ и двух основных компонент НД, α_{001} и α_{011} , возрастает пропорционально магнитной восприимчивости χ . Такое поведение свидетельствует о том, что величина этих явлений определяется магнитным моментом иона Dy³⁺ **m**, наведенным магнитным полем **B**. Компонента ЭКМ β_{001} (**k** || [110], **B** || [001]) возрастает пропорционально квадрату магнитной восприимчивости χ^2 , т.е. $\beta_{001} \sim \mathbf{m}^2$. В отличие от этого компонента β_{111} (**k** || [110], **B** || [111]) имеет более слабую температурную зависимость, что свидетельствует о проявлении в β_{111} ЭКМ микроскопических механизмов, отличных от β_{001} .

Работа выполнена при поддержке программы РФФИ-DFG (проект N 02-02-04003).

В последние годы большой интерес вызывает изучение полупроводниковых материалов с большой шириной запрещенной зоны Eg. К ним, в частности, относятся полуторные сульфиды редких земель у-Ln₂S₃ — магнитные полупроводники с шириной запрещенной зоны $E_g \approx 3 \, \mathrm{eV}$ [1]. Они кристаллизуются в нецентросимметричной кубической решетке (класс T_d) и обладают рядом свойств, обусловленных отсутствием в них центра инверсии. Так, в кристаллах семейства у-Ln₂S₃ наблюдался большой по величине электрооптический эффект [2], фотогальванический эффект [3], пьезоэлектрический эффект [4] и др. Присутствие в структуре редкоземельных (РЗ) ионов определяет магнитные свойства и относительно большую величину магнитооптических явлений. Например, эффект Фарадея (ЭФ) в области прозрачности некоторых полуторных сульфидов достигает величины $\approx 10^3 \circ / \text{cmT}$ [5].

Недавно в полуторных сульфидах редких земель было обнаружено магнитное линейное двупреломление света (МЛД) [6]. В отличие от кристаллов, обладающих центром инверсии, МЛД в γ -Ln₂S₃ определяется не только квадратичным по магнитному полю **В** эффектом Коттона–Мутона (ЭКМ), но и линейным по магнитному полю **В** невзаимным двупреломлением (НД). Природа последнего обусловлена проявлением магнитоиндуцированной пространственной дисперсии и непосредственно связана с отсутствием центра инверсии в кристаллической структуре [7].

В отличие от ЭФ ЭКМ и НД в кубическом кристалле анизотропны и для описания этих явлений необходимо определить величину ЭКМ и НД по крайней мере при двух различных направлениях магнитного поля **В** относительно кристаллографических осей. Как показали исследования МЛД в области прозрачности γ -Dy₂S₃, основные компоненты ЭКМ, β_{001} (**k** || [110], **В** || [001]) и β_{111} (**k** || [110], **B** || [111]), имеют разный знак и характеризуются различной дисперсией [8]. Энергия эффективного осциллятора $E_{\rm eff}$, определяющего дисперсию $\beta_{001}(E)$, имеет величину $E_{\text{eff}} \approx 3.4 \,\text{eV}$, что примерно на 0.6 eV выше края фундаментального поглощения. Компонента β_{111} слабо зависит от энергии фотона Е и не показывает резонансного увеличения с ростом *E* в области энергий $\Delta E = 1.5 - 2.5$ eV. Различное спектральное поведение в у-Dy₂S₃ имеют и основные компоненты НД — α_{001} ($\mathbf{k} \parallel [1\overline{1}0]$, $\mathbf{B} \parallel [001]$) и α_{011} (**k** || [110], **B** || [011]). Если α_{011} , как и β_{001} , резонансно увеличивается с энергией фотона Е и определяется переходами с энергией $E \approx 3.4 \,\mathrm{eV}$, то α_{001} аналогично β_{111} слабо зависит от *E*. Различие в спектральном поведении компонент МЛД свидетельствует о том, что они определяются электронными переходами с различной энергией. Энергия переходов, ответственных за компоненты ЭКМ (β_{111}) и НД (α_{001}) должна быть значительно больше ($E \gg 3.4 \, \text{eV}$), чем для β_{001} и α_{011} . Однозначная интерпретация переходов, определяющих магнитооптические свойства в полуторных сульфидах, в настоящее время отсутствует. Тем не менее, можно предполагать, что электронные переходы, ответственные за магнитооптические явления в *γ*-Dy₂S₃, происходят из основного состояния иона Dy^{3+} (${}^{6}H_{15/2}$) и их поведение во многом определяется расщеплением этого состояния в магнитном поле. В связи с этим представляется важным определение связи между величиной линейных и квадратичных магнитооптических явлений в у-Dy₂S₃ и магнитным моментом **m** редкоземельной подрешетки, индуцированным внешним магнитным полем. Последний, как известно, определяется заселенностью уровней основного состояния РЗ иона в магнитном поле. Такая связь может быть получена при сравнении температурных зависимостей магнитооптических явлений и магнитной восприимчивости. Насколько нам известно, до настоящего времени изучение магнитооптических свойств в γ -Ln₂S₃ ограничивалось исследованием их спектрального поведения при фиксированных температурах. Поэтому цель настоящей работы — изучение температурных зависимостей линейных по магнитному полю (ЭФ, НД) и квадратичных (ЭКМ) магнитооптических явлений в γ -Dy₂S₃ и сравнение их с температурным поведением магнитной восприимчивости.

1. Методика измерений и образцы

Исследования ЭФ и МЛД проводились с помощью поляриметрической методики, описанной в [9], на длине волны света $\lambda = 633$ nm. Экспериментально измерялись изменения поворота плоскости поляризации ξ (в случае $(\Theta \Phi)$ или эллиптичности ϕ (в случае МЛД) света, вызванные приложением к кристаллу внешнего магнитного поля В. При измерениях МЛД использовалась поперечная геометрия эксперимента k \perp B. Максимальная величина магнитного поля В, создаваемая электромагнитом, составляла ±0.5 Т. Угловые зависимости ЭКМ и НД измерялись при температуре T = 294 К в геометриях **Е** || **В** и **Е**45**В** [8,9] при изменении азимута образца θ (θ — угол между направлением магнитного поля В и кристаллографической осью типа [001]) в диапазоне $0-360^\circ$ с точностью $\sim 0.1^\circ$. Для разделения четного по магнитному полю ЭКМ и нечетного НД при заданном значении угла θ измерялись величины φ при **B** = 0 (φ_0) и при $\mathbf{B} = \pm 0.5T~(\varphi_{\pm})$. Величина ЭКМ (β) и НД (α) определялась по формулам

$$\beta = \frac{\varphi_{+} + \varphi_{-} - 2\varphi_{0}}{2dB^{2}},$$
(1)

$$\alpha = \frac{\varphi_+ - \varphi_-}{2dB},\tag{2}$$

где d — толщина образца. Величина φ_0 обусловлена присутствием в кристаллах не зависящего от магнитного поля спонтанного двупреломления, связанного с внутренними напряжениями и дефектами.

Температурные исследования проводились в оптическом криостате с замкнутым циклом в интервале температур $\Delta T = 25-294$ К при стабилизации температуры не хуже ~ 0.5 К. Кристалл располагался в вакуумном объеме на охлаждаемом держателе. ЭКМ измерялся при **B** || [001] ($\theta = 0$) и **B** || [111] ($\theta = 55^{\circ}$) в геометрии **E**45**B**, а НД — при **B** || [001] в геометрии **E** || **B** (α_{001}) и при **B** || [110] в геометрии **E**45**B** (α_{110}). Точность ориентации кристаллографических осей относительно магнитного поля $\Delta \theta$ была не хуже 5°. Для исключения ЭФ, который может проявляться из-за неточности в ориентации магнитного поля **B** перпендикулярно направлению **k**, перед измерениями МЛД проводилась юстировка магнита. Для этого из оптической схемы убиралась четвертьволновая пластинка и магнит поворачивался таким образом, чтобы приложение магнитного поля не вызывало поворотов плоскости поляризации. Чувствительность измерений поворотов плоскости поляризации составляла ~ 10["].

Образцы у-Dy₂S₃ представляли собой плоскопараллельные полированные пластинки, вырезанные в плоскости (110), размером $\sim 3 * 3 * 1 \,\mathrm{mm}$. Ориентация образцов проводилась рентгенографическим методом. Точность ориентации составляла ~ 3°. Величина спонтанного двупреломления кристаллов, связанного с внутренними напряжениями и присутствием дефектов, не превышала $\Delta n = 10^{-6}$. Присутствие такого двупреломления не влияло на величину измеряемого МЛД и ЭФ [6]. При измерениях температурных зависимостей ЭФ магнитное поле $\mathbf{B} = \pm 0.01 \, \mathrm{T}$ прикладывалось вдоль направления распространения света k. Магнит располагался внутри криостата, что позволяло исключить проявление ЭФ от окон криостата. Параметр Верде $V[^{\circ}/\text{cmT}]$, характеризующий величину ЭФ, определялся по формуле $V = (\xi_+ - \xi_-)/dB.$

2. Экспериментальные результаты

На рис. 1 представлены типичные угловые зависимости ЭКМ (β) и НД (α) в γ -Dy₂S₃ в плоскости типа (110), измеренные в геометрии **E45B**. Зависимость квадратичного по магнитному полю ЭКМ $\beta(\theta)$ в этой плоскости описывается комбинацией гармоник 0-го, 2-го и 4-го порядков $\beta(\theta) = a_1 + b_1 \cos 2\theta + c_1 \cos 4\theta$. Анизотропия нечетного по **B** НД описывается гармониками

Рис. 1. Угловые зависимости ЭКМ (β) — 1 и НД (α) — 2 в γ -Dy₂S₃ в плоскости (110) при λ = 633 nm, измеренные в геометрии **E**45**B**. Сплошной линией показан расчет ЭКМ по формуле $\beta(\theta) = a_1 + b_1 \cos 2\theta + c_1 \cos 4\theta$. Штриховая линия расчет НД по формуле $\alpha(\theta) = a_2 \sin \theta + b_2 \sin 3\theta$.

1-го и 3-го порядков $\alpha(\theta) = a_2 \sin \theta + b_2 \sin 3\theta$. В соответствии с феноменологическим описанием квадратичных магнитооптических явлений в кубическом кристалле класса *T*_d компоненты ЭКМ, измеренные в геометрии Е45В, β_{001} (В || [001]) и β_{111} (В || [001]), определяются тензором четвертого ранга $\rho_{i\,ik1}$, симметричного по двум парам индексов [10]: $\beta_{001} = -\pi (1/2) n^3 (\rho_{11} - \rho_{12}) / \lambda$ и $\beta_{111} = -\pi n^3 \rho_{44} / \lambda$. НД в геометрии **Е45В** при **В** || [011] (α_{011}) определяется компонентами A и g и тензора уіік1, описывающего связь между компонентами тензора диэлектрической проницаемости ε_{ii} , волновым вектором света k и магнитным полем B $(\delta \varepsilon_{ij} = \gamma_{ijm1} k_m B_1), \ \alpha_{011} = \pi (3A + 2g)k/4n\lambda.$ В геометрии **E** || **B** при **B** || [001] НД (α_{001}) определяется только компонентой $g: \alpha_{001} = \pi g k / n \lambda$ [9]. Компоненты $\beta_{001}, \beta_{111}, \beta_{111}$ α₀₀₁ и α₀₁₁ полностью определяют МЛД кубического кристалла, поэтому исследовались температурные зависимости именно этих компонент.

На рис. 2 показаны температурные зависимости компонент ЭКМ β_{001} и β_{111} в γ -Dy₂S₃. При понижении температуры абсолютная величина обеих компонент монотонно увеличивается. При T = 25 К величина β_{001} достигает значений $\beta \approx 70^{\circ}/\text{cmT}^2$, что в 45 раз превышает значение β_{001} при T = 294 К. В отличие от β_{001} компонента β_{111} при понижении температуры увеличивается значительно слабее. При T = 25 К ее величина ($\beta_{111} \approx -15^{\circ}/\text{cmT}^2$) всего в 15 раз больше, чем при комнатной температуре.

На рис. 3 представлены температурные зависимости НД $\alpha_{001}(T)$ и $\alpha_{011}(T)$. Обе компоненты НД увеличиваются при понижении температуры почти одинаковым образом и их значения при T = 25 К примерно на порядок больше, чем при T = 294 К.

На рис. 4 показана температурная зависимость ЭФ в γ -Dy₂S₃. Зависимость V(T) аналогична температурной

Рис. 2. Температурные зависимости ЭКМ β_{001} (1) и β_{111} (2), 3 — температурная зависимость $\beta_{001}^{-0.5}$. Штриховая линия соответствует линейной аппроксимации.

Рис. 3. Температурные зависимости НД α_{011} (геометрия **E**45**B**, **B** || [011]) — *1*, и α_{001} (геометрия **E** || **B**, **B** || [001]) — *2*; *3* — температурная зависимость α_{011}^{-1} . Штриховая линия соответствует линейной аппроксимации.

Рис. 4. Температурная зависимость ЭФ V(I) и величины обратной ЭФ $V^{-1}(2)$ в γ -Dy₂S₃ при $\lambda = 633$ nm. Штриховая линия соответствует линейной аппроксимации $V^{-1}(T)$.

зависимости компонент НД $\alpha_{001}(T)$ и $\alpha_{011}(T)$. Величина ЭФ монотонно увеличивается при уменьшении температуры и достигает значений ~ 3000°/сmT при T = 25 К.

Таким образом, понижение температуры приводит к сильному увеличению линейных и квадратичных магнитооптических явлений в γ -Dy₂S₃. Линейные по магнитному полю явления, ЭФ и НД, увеличиваются при понижении температуры одинаково и их величина при T = 25 К примерно на порядок больше, чем при

T = 294 К. Компоненты квадратичного по магнитному полю ЭКМ β_{001} и β_{111} имеют различное поведение при понижении температуры. Компонента β_{001} увеличивается почти в два порядка, в то время как β_{111} возрастает только на порядок.

3. Обсуждение результатов

Относительно большая величина линейных и квадратичных магнитооптических явлений в полуторных сульфидах редких земель у-Ln₂S₃, в частности при T = 294 K, связана с присутствием в их структуре трехвалентных РЗ ионов с незаполненной 4^{*f*} - оболочкой, определяющих парамагнетизм этих соединений, а также с особенностями их электронной структуры. В отличие от парамагнитных диэлектриков, содержащих РЗ ионы (например, гранатов-галлатов, гранатов-алюминатов, фосфатных и силикатных стекол), в которых энергия оптических переходов между состояниями $4f^N \to 4f^{N-1}5d$ РЗ ионов, ответственных за магнитооптические явления, расположена в области энергий $E \sim 5-7 \,\mathrm{eV}$ [11], в редкоземельных полупроводниках у-Ln₂S₃ энергия оптических переходов существенно меньше ($E = 3.5 - 4 \,\mathrm{eV}$) и ее величина коррелирует с шириной запрещенной зоны E_g [12]. Парамагнитные свойства γ -Dy₂S₃ среди кристаллов семейства полуторных сульфидов выражены наиболее ярко вследствие большой величины магнитного момента иона Dy^{3+} (10.6 μ_B) в основном состоянии (${}^{6}H_{15/2}$). В этом семействе γ -Dy₂S₃ характеризуется также наибольшей силой магнитооптического осциллятора B_{eff}, который входит в выражение для дисперсии ЭФ в одноосцилляторной модели: $V(E) = B_{\rm eff} E^2 / (E_{\rm eff}^2 - E^2)$ [5].

Температурное поведение магнитооптических явлений в парамагнетиках в области прозрачности при частотах света вдали от резонансов определяется действием различных механизмов. Механизм смешивания и диамагнитный механизм определяют температурнонезависимую часть ЭФ, в то время как парамагнитный механизм описывает зависящий от температуры ЭФ [13]. В слабых магнитных полях, т.е. в том случае, когда зависимость $\mathbf{m}(\mathbf{B})$ является линейной, парамагнитный механизм обеспечивает линейную связь между ЭФ и магнитным моментом \mathbf{m} редкоземельной подрешетки, наводимым магнитным полем **В**

$$V = Am(T)/B = A\chi(T), \qquad (3)$$

где $\chi(T)$ — магнитная восприимчивость, A — магнитооптическая восприимчивость.

В кристаллах, содержащих РЗ ионы с отличным от нуля орбитальным моментом в основном состоянии, парамагнитный вклад в магнитную восприимчивость редкоземельной подрешетки обычно существенно превосходит диамагнитный и ван флековский вклады. Температурная зависимость ЭФ в таких кристаллах определяется в основном парамагнитным механизмом, т.е. температурным поведением магнитной восприимчивости $\chi(T)$ [13]. Магнитооптическая восприимчивость A в выражении (3) определяется энергией оптических переходов, ответственных за ЭФ, матричными элементами типа Im $\{d_{ab}d_{ba}\}$, где a и b обозначают основное и возбужденное состояния оптического перехода, d_{ab} — оператор дипольного момента, и величиной показателя преломления n. Поскольку в γ -Gd₂S₃, в котором P3 ион находится в S-состоянии, и в диамагнитном γ -La₂S₃ величина НД и ЭКМ при T = 294 K по крайней мере на порядок меньше, чем в γ -Dy₂S₃ и γ -Pr₂S₃ [6], можно ожидать, что парамагнитный механизм определяет также температурное поведение линейного по магнитному полю НД в γ -Dy₂S₃

$$\alpha = Cm(T)/B = C\chi(T) \tag{4}$$

и квадратичного по магнитному полю ЭКМ

$$\beta = Dm^2(T)/B^2 = D\chi^2(T), \qquad (5)$$

где *С* и *D* — магнито-оптические восприимчивости.

Следует отметить, что выражения (3)–(5) справедливы только в области линейной зависимости $\mathbf{m}(\mathbf{B})$, где выполняется условие $g\mu_B B \ll kT$, где g — фактор спектроскопического расщепления основного состояния. Нарушение этого условия может приводить к появлению ЭФ в кубическом кристалле в поперечном магнитном поле **B** из-за анизотропии *g*-фактора [14], зависимости величины ЭФ от направления распространения света **k**, нарушению правила четных эффектов в случае ЭКМ, анизотропии магнитной восприимчивости [15], появлению линейной зависимости ЭКМ от магнитного поля [16] и т.д. В диапазоне температур и магнитных полей, исследованных в настоящей работе, условие $g\mu_B B \ll kT$ выполнялось.

Исследование температурного поведения магнитной восприимчивости у-Dy₂S₃, проведенное на измельченных монокристаллах, показало, что этот кристалл находится в парамагнитном состоянии вплоть до гелиевых температур ($T = 4.2 \, \text{K}$) и температурная зависимость обратной магнитной восприимчивости χ^{-1} приближенно описывается линейной функцией температуры $\chi^{-1} = C_m(T - \theta_m)$, где $\theta_m \cong 5 \,\mathrm{K}$ [17]. На рис. 3, 4 представлены температурные зависимости обратных значений НД $\gamma_{001}^{-1}(T)$ и ЭФ $V^{-1}(T)$ в γ -Dy₂S₃. Эти зависимости хорошо описываются линейными функциями от температуры. Данный факт свидетельствует о том, что основной вклад как в ЭФ, так и в НД определяется парамагнитным механизмом. На рис. 2 представлена температурная зависимость квадратного корня из обратной величины ЭКМ — $\beta_{001}^{-0.5}(T)$. Зависимость $\beta_{001}^{-0.5}(T)$ является линейной функцией температуры, т.е. компонента ЭКМ β_{001} , так же как НД и ЭФ, связана с проявлением парамагнитного механизма. Следует отметить, что точки пересечения зависимостей $V^{-1}(T)$, $\alpha_{001}^{-1}(T)$ и $\alpha_{011}^{-1}(T)$ с осью абсцисс (рис. 3, 4) сдвинуты в область отрицательных температур на величину примерно 10 К. Отрицательные значения температуры Кюри θ_m , как известно, характерны для антиферромагнетиков, поэтому, несмотря на то что на температурное поведение магнитооптических явлений может оказывать влияние температурная зависимость магнитооптических восприимчивостей *A*, *C* и *D* и показателя преломления *n* вследствие температурного сдвига края зоны $E_g(T)$, нельзя исключить возможность перехода γ -Dy₂S₃ в антиферромагнитное состояние при температурах T < 4.2 К. Отметим, что антиферромагнитное упорядочение при низких температурах ($T \approx 2.5$ К) наблюдается в диэлектрических кристаллах Dy₃Al₅O₁₂ и Dy₃Ga₅O₁₂.

Температурное поведение компоненты ЭКМ $\beta_{111}(T)$ отличается от $\beta_{001}(T)$. Если отношение величины ЭКМ к квадрату ЭФ, $\beta_{001}(T)/V(T)^2 = 9.1 \cdot 10^{-6} \, (\mathrm{cm}/^\circ)$, остается постоянным с точностью 10% в температурном диапазоне $\Delta T = 25 - 300$ K, то отношение $\beta_{111}(T)/V(T)^2$ в этом же температурном диапазоне изменяется в несколько раз. Температурная зависимость $\beta_{111}^{-0.5}(T)$ не описывается линейной функцией температуры, и, следовательно, эта компонента определяется не только парамагнитным механизмом. Возможной причиной отличия температурной зависимости $\beta_{111}(T)$ от $m^{2}(T)$ может быть присутствие небольшого по величине температурно-независимого вклада, обусловленного диамагнитным или ван флековским механизмом, или проявление механизма, связанного с совместным действием квадратичного магнитоэлектрического эффекта и эффекта Поккельса [8]. В последнем случае температурная зависимость $\beta_{111}(T)$ должна определяться произведением магнитоэлектрической восприимчивости второго порядка и линейного электрооптического коэффициента и может отличаться от зависимости $\beta_{001}(T)$.

Таким образом, проведенное исследование показало, что компоненты линейного по магнитному полю НД α_{001} и α_{011} в γ -Dy₂S₃ в исследованном диапазоне температур и магнитных полей, так же как и ЭФ, изменяются пропорционально намагниченности редкоземельной подрешетки, т. е. определяются парамагнитным механизмом. Компонента квадратичного по магнитному полю ЭКМ, β_{001} , изменяется пропорционально квадрату намагниченности, а компонента β_{111} имеет более слабую температурную зависимость. Различие спектральных и температурных зависимостей β_{001} и β_{111} позволяет сделать вывод о проявлении различных микроскопических механизмов этих компонент ЭКМ.

Список литературы

- [1] В.П. Жузе, А.И. Шелых. ФТП 23, 393 (1990).
- [2] В.П. Жузе, А.А. Камарзин, В.В. Соколов, Т.И. Волконская, И.А. Смирнов, А.И. Шелых. Письма ЖТФ 7, 1435 (1981).
- [3] Т.М. Батиров, К.А. Верховская, А.А. Камарзин, Ю.Н. Маловицкий, В.И. Лисовайн, В.М. Фридкин. ФТТ 24, 1313 (1982).
- [4] Т.И. Волконская, А.И. Шелых, А.В. Сотников, В.В. Соколов, Ф.Р. Ахмеджанов. ФТТ 29, 2, 559 (1987).
- Физика твердого тела, 2005, том 47, вып. 2

- [5] Р. Дагис, Г. Барбонас, Г. Пукинскас. Литов. физ. сб. 28, 5, 559 (1988).
- [6] Б.Б. Кричевцов. ЖЭТФ 119, 954 (2001).
- [7] D.L. Portigal, E. Burstein. J. Phys. Chem. Solid. 32, 1396 (1975).
- [8] Б.Б. Кричевцов, Х.-Ю. Вебер. ФТТ 46, 488 (2004).
- [9] Б.Б. Кричевцов, Р.В. Писарев, А.А. Ржевский, Х.-Ю. Вебер. ЖЭТФ 114, 3, 1018 (1998).
- [10] Р.В. Писарев. В кн.: Физика магнитных диэлектриков. Наука, Л. (1974). 454 с.
- [11] А.К. Звездин, В.М. Матвеев, А.А. Мухин, А.И. Попов. Редкоземельные ионы в магнитоупорядоченных кристаллах. Наука, М. (1985). 204 с.
- [12] G. Babonas, R. Dagis, G. Pukinskas. Phys. Stat. Sol. (b) 153, 741 (1989).
- [13] A.K. Zvezdin, V.A. Kotov. Modern Magnetooptics and Magnetooptical Materials. Institute of Physics Publishing, Bristol, Philadelphia (1997). 386 p.
- [14] В.М. Запасский. ФТТ 19, 964 (1977).
- [15] А.К. Звездин, А.И. Попов, Х.И. Туркменов. ФТТ 28, 1760 (1986).
- [16] Н.Ф. Ведерников, А.К. Звездин, С.В. Копцик, Р.З. Левитин, К.М. Мукимов, А.П. Петров, А.И. Попов, Х.И. Туркменов. Письма в ЖЭТФ 43, 1, 38 (1986).
- [17] H.L. Beeler, J.B. Gruber. Chem. Phys. 13, 359 (1976).