Реакция электро- и магнетосопротивления пленок La_{0.67}Ca_{0.33}MnO₃ на двухосные растягивающие механические напряжения

© Ю.А. Бойков, Т. Клаесон*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Чалмерский технический университет,

SE-41296 Гётеборг, Швеция E-mail: yu.boikov@mail.ioffe.ru

(Поступила в Редакцию 27 мая 2004 г.)

Исследованы структура, электро- и магнетосопротивление эпитаксиальных пленок $(50\,\mathrm{nm})\mathrm{La}_{0.67}\mathrm{Ca}_{0.33}\mathrm{MnO}_3$, выращенных на подложке $[(80\,\mathrm{nm})\mathrm{Ba}_{0.25}\mathrm{Sr}_{0.75}\mathrm{TiO}_3/\mathrm{La}_{0.35}\mathrm{Ca}_{0.35}\mathrm{Ca}_{0.35}\mathrm{O}_3]$ со значительным положительным рассогласованием в параметрах кристаллических решеток. Растягивающие двухосные механические напряжения обусловили увеличение объема элементарной ячейки и относительной концентрации ионов Mn^{+3} в манганитных пленках по сравнению с соответствующими параметрами для исходного материала (33%). Максимум на температурной зависимости электросопротивления ρ сформированных пленок $\mathrm{La}_{0.67}\mathrm{Ca}_{0.33}\mathrm{MnO}_3$ был сдвинут на 30–35 градусов в сторону низких температур относительно его положения на зависимости $\rho(T)$ для манганитной пленки, выращенной на $(001)\mathrm{La}_{0.3}\mathrm{Sr}_{0.7}\mathrm{Al}_{0.65}\mathrm{Ta}_{0.35}\mathrm{O}_3$. При $T<150\,\mathrm{K}$ температурные зависимости ρ пленок $\mathrm{La}_{0.67}\mathrm{Ca}_{0.33}\mathrm{MnO}_3/\mathrm{Ba}_{0.25}\mathrm{Sr}_{0.75}\mathrm{TiO}_3/\mathrm{La}_{0.3}\mathrm{Sr}_{0.7}\mathrm{Al}_{0.65}\mathrm{Ta}_{0.35}\mathrm{O}_3$ хорошо аппроксимировались соотношением $\rho=\rho_0+\rho_1T^{4.5}$, где $\rho=0.35\,\mathrm{m}\Omega\cdot\mathrm{cm}$, а коэффициент ρ_1 линейно убывает с ростом напряженности магнитного поля. В температурном интервале 4.2– $300\,\mathrm{K}$ магнетосопротивление выращенных манганитных пленок находилось в пределах 15–95% ($\mu_0H=5\,\mathrm{T}$).

Исследования проводились в рамках научного сотрудничества Российской и Шведской королевской академии наук. Финансовая поддержка для проведения данной работы была частично получена из проекта 9Б19 программы Президиума РАН "Низкоразмерные квантовые структуры" и проекта № 04-02-16212 Российского фонда фундаментальных исследований.

1. Введение

Тонкие пленки $\text{La}_{1-x}(\text{Ca,Sr})_x\text{MnO}_3$ интенсивно исследуются в последние годы в связи с перспективностью их использования в головках для считывания информации с магнитных дисков [1], в ячейках магнитной памяти [2], в детектерах ИК излучения [3], в качестве покрытий, эффективно поглощающих электромагнитные сигналы в СВЧ диапазоне [4] и т.д.

Электронный транспорт и магнитные свойства ${\rm La}_{1-x}({\rm Ca,Sr})_x{\rm MnO}_3$ определяются степенью зарядового и спинового упорядочения в 3d электронных оболочках трех- и четырех-валентных ионов марганца. Исследование механизмов, влияющих на характер и уровень взаимозависимости электрических и магнитных свойств перовскитоподобных манганитов, относящихся к материалам с сильно коррелированными электронами, представляет значительный научный интерес.

Наряду со структурой и химическим легированием механические напряжения оказывают существенное влияние на параметры гетероэпитаксиальных пленок $La_{1-x}(Ca,Sr)_xMnO_3$. Различия в параметрах кристаллических решеток и температурных коэффициентах линейного расширения подложки и пленки являются основными причинами возникновения двухосных механических напряжений в последней. До настоящего времени влияние механических напряжений на процесс упорядочения электронных спинов в манганитных пленках

исследовано слабо. Это не позволяет целенаправленно использовать двухосные механические напряжений для оптимизации электрических и магнитных параметров тонких манганитных слоев.

настояшей работе исследованы La_{0.67}Ca₀₃₃MnO₃ (LCMO), выращенные на подложке $La_{0.3}Sr_{0.7}Al_{0.65}Ta_{0.35}O_3$ (LSATO), покрытой буферным слоем $Ba_{0.25}Sr_{0.75}TiO_3$ (BSTO), параметр кристаллической решетки которого больше соответствующих параметров LCMO и LSATO. Ранее [5,6] нами было показано, что температурные зависимости электро- и магнетосопротивления эпитаксиальных пленок LCMO, сформированных на монокристаллических подложках (LSATO, NdGaO₃) с малым рассогласованием в параметрах кристаллических решеток и температурных коэффициентов линейного расширения, хорошо согласуются с данными для соответствующих стехиометрических объемных образцов.

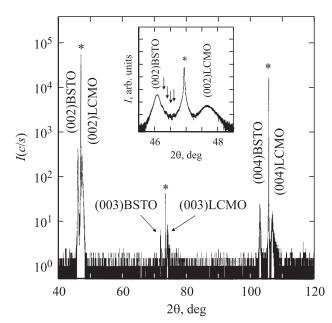
2. Эксперимент

Тонкий буферный слой BSTO использован для того, чтобы увеличить эффективное рассогласование в параметрах кристаллических решеток m между манганитной пленкой и подложкой ($m = (a_S - a_L)/a_S$, где a_S и a_L — параметры подложки и слоя соответственно). В случае пленки BSTO (при 300 K кубическая элементарная ячейка, $a_1 = 3.930 \,\text{Å}$ [7]) и подложки LSATO

(при 300 К псевдокубическая ячейка, $a_2 = 3.868\,\text{Å}$ [7]) $m \approx -1.6\%$. Параметр псевдокубической элементарной ячейки стехиометрических объемных образцов LCMO равен 3.858 Å [8]. Температурные коэффициенты линейного расширения LCMO, BSTO и LSATO имеют близкие значения [7,9].

Метод лазерного испарения (ComPex 205, KrF, $\lambda=248\,\mathrm{nm},~\tau=30\,\mathrm{ns})$ был использован для последовательного формирования буферной прослойки (80 nm)BSTO и пленки (50 nm)LCMO на поверхности (001)LSATO. Температура подложки в процессе роста BSTO и LCMO равнялась 760°С. Плотность лазерного излучения на поверхности мишеней составляла 2 J/cm², а давление кислорода в ростовой камере поддерживалось на уровне $p_0=0.3\,\mathrm{mbar}$. Эффективная скорость роста v пленок BSTO и LCMO составляла 0.7 и 0.2 Å/imp. соответственно. После завершения процесса осаждения манганитной пленки сформированная гетероструктура охлаждалась в атмосфере кислорода ($p_{\mathrm{O}}=1\,\mathrm{atm}$) до комнатной температуры со скоростью 20°С/min.

Фазовый состав, ориентация и структура выращенных слоев исследовались с использованием рентгеновской дифракции (Philips E'pert MRD, 2θ - и ϕ -сканы и кривые качания). Рентгеновские сканы были визуализированы с использованием прецизионной рентгеновской оптики (четырехкристалльный монохроматор (220) Ge был использован при формировании падающего рентгеновского пучка, а 2θ измерялось с использованием плоского графитового монохроматора). Для определения параметров кристаллической решетки выращенных слоев в плоскости подложки и вдоль нормали к ее поверхности $\omega/2\theta$ сканы были измерены в условиях, когда плоскость, включающая падающий и отраженный рентгеновские пучки была ортогональна (101) или (001) LSATO. Толщина буферного слоя и манганитной пленки в гетероструктуре LCMO/BSTO/LSATO контролировалась по ширине сателлитных пиков Лауэ на измеренных рентгеновских дифрактограммах.


Сопротивление R пленок LCMO измерялось в конфигурации van der Pauw в интервале температур 4.2–300 K, в магнитном поле и без него ($\mu_0 H$ до 5 T, направление магнитного поля параллельно плоскости подложки, но перпендикулярно направлению тока). На поверхность пленки LCMO напылялись четыре серебряных контакта, расположенные на углах квадрата. Удельное сопротивление ρ пленок рассчитывалось по формуле $\rho = \pi R d / \ln 2$ [10], где d = 50 nm — толщина манганитного слоя.

3. Результаты и их обсуждение

Было сформировано и исследовано пять гетероструктур LCMO/BSTO/(001)LSATO. Разброс структурных, электрических и магнитных параметров пленок LCMO

в выращенных двухслойных системах был незначительным. В частности, относительный сдвиг максимума на измеренных кривых $\rho(T,H=0)$ для манганитных пленок в выращенных гетероструктурах не превышал 5 K, а значения полуширины кривой качания η для рентгеновского пика (002) от соответствующих слоев различались не более чем на 8%.

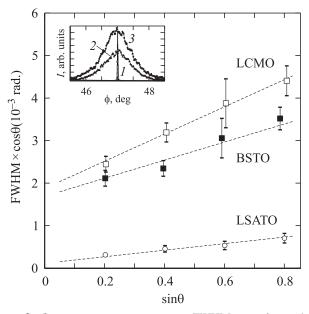
3.1. Структура выращенных слоев BSTO и LCMO. Из полученных рентгеновских данных следует, что пленка LCMO и буферный слой BSTO в гетероструктуре LCMO/BSTO/LSATO были свободны от макровключений вторичных фаз (рис. 1). На рентгеновских ϕ -сканах для рефлексов (101) от буферного слоя BSTO и пленки LCMO имелось по четыре эквидистантно (через каждые 90 градусов) расположенных пика. Слои, составляющие гетероструктуру, были преимущественно ориентированы как относительно нормали к плоскости подложки, так и азимутально, причем плоскости (001) и направления [010] в LCMO и BSTO были параллельны (001) и [010]LSATO, соответственно. Параметры элементарной ячейки слоя BSTO, измеренные в плоскости подложки a_{\parallel} и вдоль нормали к ее поверхности a_{\perp} , отличались незначительно (см. таблицу). Релаксация механических напряжений в буферном слое происходила в значительной степени в процессе его осаждения и насыщения кислородом. Эффективный объем $V_{\mathrm{eff}}=a_{\perp}{ imes}a_{\parallel}^2=60.73\,\mathrm{\mathring{A}}^3$ элементарной ячейки в буферном слое хорошо согласуется с имеющимися в

Рис. 1. Рентгеновская дифрактограмма (CuK_{a_1} , $\omega/2\theta$ -скан) для гетероструктуры (50 nm)LCMO/(80 nm)BSTO/(001)LSATO, полученная в условиях, когда падающий и отраженный рентгеновские пучки находились в плоскости, перпендикулярной (001)LSATO. Звездочки — рентгеновские пики от подложки. На вставке приведен фрагмент той же дифрактограммы, содержащий рефлексы (002) от манганитной пленки, буферного слоя и подложки. Стрелками отмечены сателлитные пики Лауэ.

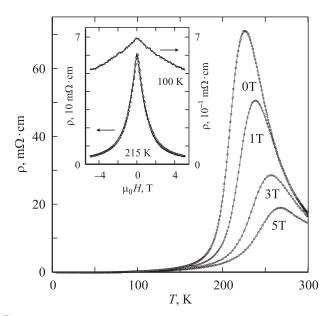
Параметры пленок BSTO и LCMO в гетероструктуре LCMO/BSTO/(001)LSATO

Мате- риал пленок	Толщина слоя, nm	υ, Å/imp.	a⊥, Å	a _∥ , Å	V _{eff} , Å ³	$\Delta a/a,$ 10^{-3}	t, nm	$\partial \phi$, deg	η, deg
BSTO	80	0.7	3.934	3.929	60.73	1.1	90	1	0.09
LCMO	50	0.2	3.812	3.883	57.48	1.6	70	1	0.17

литературе данными для соответствующих объемных образцов [11].


Рассогласование в параметрах кристаллических решеток LCMO и LSATO составляет $m \approx +0.3\%$. В случае пленки LCMO и подложки LSATO, покрытой буферным слоем (80 nm)BSTO, величина *m* возрастает в 6 раз, примерно до +1.8%. Параметр элементарной ячейки в пленке LCMO, выращенной на BSTO/LSATO, измеренный вдоль нормали к плоскости подложки $(3.812 \pm 0.003 \,\text{Å})$, был существенно меньше параметра ячейки, измеренного в плоскости подложки $(3.883 \pm 0.003 \,\text{Å})$. Пленка $(50 \,\text{nm})$ LCMO, выращенная на BSTO/LSATO, находилась под действием растягивающих в плоскости подложки механических напряжений. Сравнение параметров a_{\parallel} для слоев, составляющих двухслойную гетероструктуру LCMO/BSTO, сформированную на (001) LSATO (см. таблицу), указывает на то, что механические напряжения в манганитной пленке частично релаксировали. Значительная ширина кривой качания, полученная для рентгеновского пика (002)LCMO (см. таблицу), свидетельствует о неоднородной релаксации механических напряжений в манганитной пленке. Эффективный объем ($\sim 57.48\,\mathrm{\AA^3}$) элементарной ячейки в пленке LCMO/BSTO/LSATO был больше соответствующего значения для объемных стехиометрических образцов LCMO ($\sim 57.39 \, \text{Å}^3 \, [9]$).

Увеличение $V_{\rm eff}$ в пленках LCMO, выращенных на BSTO/LSATO, обусловлено высокой концентрацией вакансий кислорода в их объеме и/или обеднением кальцием. На начальной стадии формирования манганитной пленки на поверхности BSTO/LSATO формируются зародыши стехиометрического состава так же, как и обедненные или обогащенные кислородом (кальцием). Зародыши LCMO, дефицитные по кислороду (кальцию), обладают меньшей энергией упругой деформации по сравнению с зародышами стехиометрического состава, поскольку параметр решетки перовскитоподобного манганита увеличивается при его обеднении кислородом (кальцием). По этой причине зародыши, обедненные кислородом (кальцием), становятся стабильными в первую очередь. На внешних границах разрастающихся островков LCMO может сегрегироваться фаза, обогащенная кальцием. Поэтому состав межкристаллитных прослоек в пленке LCMO/BSTO/LSATO может несколько отличаться от состава в объеме кристаллитов. Указанные особенности зародышеобразования и роста перовскитоподобных манганитов способствуют тому, что эффективный объем элементарной ячейки пленок LCMO, выращенных на подложке со значительным положительным рассогласованием в параметрах кристаллических решеток, оказывается больше, чем $V_{\rm eff}$ для соответствующих монокристаллов. В соответствии с изложенной выше моделью объем элементарной ячейки в пленках (40 nm)LCMO [12], сформированных в условиях двухосных сжимающих механических напряжений, был меньше, чем значение $V_{\rm eff}$ для стехиометрических объемных образцов.


Для оценки эффективного размера кристаллических зерен t и средней величины относительного искажения параметра решетки $\Delta a/a$ в слоях, составляющих гетероструктуру LCMO/BSTO/LSATO была использована зависимость полуширины FWHM (ширина пика, измеренная на половине высоты) пиков (00n) на рентгеновском $\omega/2\theta$ скане от θ , которая согласно [13] может быть представлена в виде

FWHM
$$\times \cos \theta = 0.9 \lambda_1 / t + 2 \Delta a / a \times \sin \theta$$
, (1)

где $\lambda_1=1.54056\,\text{Å}$ — длина волны рентгеновского излучения. Из данных, представленных на рис. 2, следует, что значения $0.9\lambda_1/t$ для слоя BSTO и пленки LCMO при $\theta=0$ равны $1.6\cdot 10^{-3}$ и $1.9\cdot 10^{-3}$ соответственно. Отсюда следует, что эффективный размер кристаллических зерен в буферном слое равен 90 nm, а в манганитной пленке — $70\,\text{nm}$. Значения $\Delta a/a$, определенные для слоев BSTO и LCMO из величины тангенса угла наклона зависимостей FWHM $\times \cos\theta$

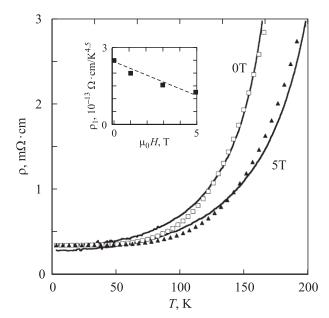
Рис. 2. Зависимости произведения FWHM $\times \cos \theta$ от $\sin \theta$ для манганитной пленки, буферного слоя и подложки в гетероструктуре (50 nm)LCMO/(80 nm)BSTO/(001)LSATO. На вставке показаны пики на рентгеновских ϕ -сканах для рефлексов (101) от подложки LSATO (1), пленки LCMO (2) и буферной прослойки BSTO (3).

Рис. 3. Температурные зависимости электросопротивления ρ пленки (50 nm)LCMO в гетероструктуре LCMO/BSTO/(001)LSATO, измеренные при различной напряженности магнитного поля. На вставке приведены зависимости ρ от магнитного поля, полученные при температурах 100 и 215 К.

от $\sin\theta$, показанных на рис. 2, приведены в таблице. Средняя величина искажения параметра решетки в слое $(80\,\mathrm{nm})\mathrm{BSTO}$ ($\Delta a/a\approx 1.1\cdot 10^{-3}$) примерно вдвое больше соответствующего значения, полученного для толстых эпитаксиальных пленок $(700\,\mathrm{nm})\mathrm{BSTO}$, выращенных на поверхности $\mathrm{SrRuO_3}$ [7]. Значительная величина $\Delta a/a\approx 1.6\cdot 10^{-3}$ для пленки LCMO в гетероструктуре LCMO/BSTO/LSATO указывает на неоднородность механических напряжений, действующих в ее объеме.

Рассогласование в параметрах кристаллических решеток BSTO и LSATO является причиной существенной азимутальной разориентации $\partial \phi \approx 1$ deg кристаллических зерен в буферном слое и в манганитной пленке, выращенной на его поверхности. Оценка $\partial \phi$ была сделана с учетом ширины (измеренной на половине высоты) пиков на ϕ -сканах, полученных для рентгеновских рефлексов (101)BSTO и (101)LCMO от гетероструктуры LCMO/BSTO/LSATO. Соответствующие рентгеновские пики показаны на вставке рис. 2. На той же вставке приведен для сравнения пик на рентгеновском ϕ -скане, измеренном для рефлекса (101) от монокристаллической подложки LSATO ($\partial \phi \approx 0.02$ deg).

3.2. Зависимость сопротивления пленок LCMO от температуры и магнитного поля. При H=0 максимум на температурной зависимости удельного сопротивления пленок LCMO, выращенных на BSTO/LSATO, наблюдался при температуре $T_M=225-230\,\mathrm{K}$ (рис. 3). Указанное значение примерно на 35 K меньше температуры, при которой достигает максимума сопротивление объемных стехио-


метрических образцов и эпитаксиальных пленок LCMO, сформированных на (001)LSATO [5]. (T_M для объемных кристаллов LCMO незначительно отличается от температуры Кюри T_C [14]). Понижение T_M для пленок LCMO/BSTO/LSATO может быть частично обусловлено нарушением их стехиометрии. Обеднение пленки LCMO кислородом (кальцием) сопровождается увеличением относительной концентрации ионов Mn⁺³ в ее объеме, что в соответствии с фазовой диаграммой, полученной для керамических образцов $La_{1-x}Ca_xMnO_3$ [15], должно приводить к понижению температуры ферромагнитного упорядочения спинов на ионах марганца. Неоднородная упругая деформация манганитной пленки увеличивает разброс в значениях эффективной длины связей между ионами марганца и кислорода, что также вносит вклад в снижение T_M [16].

Магнитное поле способствует ферромагнитному упорядочению спинов в манганитной пленке и увеличению T_M . При возрастании $\mu_0 H$ в интервале 0–5 Т максимум на зависимостях $\rho(T,H)$ для пленок LCMO/BSTO/LSATO сдвигался в сторону высоких температур (на 45 К при $\mu_0 H = 5$ Т), а пиковое значение электросопротивления понижалось в три–четыре раза (рис. 3).

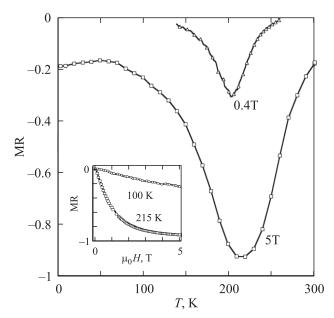
При $T < T_C$ наряду с электрон-электронным взаимодействием, рассеянием электронов на фононах и дефектах структуры вклад в электросопротивление 3d ферромагнитных металлов вносит разупорядочение спинов [17]. Согласно данным [18], вектор спонтанной намагниченности в пленке LCMO, двухосно механически напряженной подложкой (растяжение), ориентируется преимущественно параллельно плоскости последней. Неоднородность напряжений, так же как и азимутальная разориентация кристаллических зерен, усиливает беспорядок в системе электронных спинов на ионах марганца. Вклад электрон-магнонного взаимодействия в электросопротивление манганитной пленки должен становиться существенным, когда основная часть ее объема находится в ферромагнитном состоянии, т.е. при $T \ll T_C$. Когда процесс релаксации носителей заряда определяется в основном их взаимодействием со спиновыми волнами, электропроводность ферромагнетика, согласно [19], должна следовать соотношению $ho \sim
ho_1 T^{4.5}$, где ho_1 коэффициент, зависящий от магнитного поля, но не зависящий от температуры. Температурные зависимости электросопротивления пленки LCMO/BSTO/LSATO, измеренные при $\mu_0 H$, равном 0 и 5 T, приведены на рис. 4 (сплошные кривые). При $T < 200 \,\mathrm{K}$ и $\mu_0 H = 0 - 5 \,\mathrm{T}$ экспериментально полученные зависимости $\rho(T,H)$ могут быть хорошо аппроксимированы соотношением

$$\rho(T, H) = \rho_0 + \rho_1(H)T^{4.5}, \tag{2}$$

где $\rho_0=3.5\,\mathrm{m}\Omega\cdot\mathrm{cm}$ — не зависящая от температуры и магнитного поля постоянная, значения коэффициента $\rho_1(H)$ определены при различной напряженности магнитного поля из наклона экспериментальных зависимостей $\rho\sim T^{4.5}$ в интервале температуры

Рис. 4. Температурные зависимости электросопротивления ρ пленки $(50\,\mathrm{nm})\mathrm{LCMO}/(80\,\mathrm{nm})\mathrm{BSTO}/(001)\mathrm{LSATO}$, измеренные в интервале 4.2– $200\,\mathrm{K}$ при $\mu_0 H = 0$; $5\,\mathrm{T}$ (сплошные кривые). Значения ρ , рассчитанные с использованием соотношения (2) для $\mu_0 H = 0$ (квадраты) и $\mu_0 H = 5\,\mathrm{T}$ (треугольники), хорошо согласуются с экспериментальными данными. На вставке показана зависимости коэффициента ρ_1 от магнитного поля для той же пленки.

 $4.2-50\,\mathrm{K}$. ρ_1 примерно линейно убывает с увеличением напряженности магнитного поля (вставка на рис. 4). Аналогичная зависимость величины коэффициента ρ_1 от магнитного поля наблюдалась в [14]. Значения ρ для пленки LCMO/BSTO/LSATO, рассчитанные с использованием соотношения (2) при $\mu_0 H = 0$ (квадраты) и $\mu_0 H = 5\,\mathrm{T}$ (треугольники), приведены на рис. 4. В [14] при аппроксимации кривых $\rho(T)$, измеренных для пленок LCMO, подвергнутых термообработке в атмосфере кислорода, в правую часть соотношения (2) был добавлен член, пропорциональный T^2 , для учета вклада электрон-электронного взаимодействия в процесс релаксации носителей заряда.


В интервале температуры $200 \, \mathrm{K-}T_M$ сопротивление пленки LCMO/BSTO/LSATO возрастало с ростом температуры быстрее, чем предсказывалось соотношением (2). Это обусловлено увеличением концентрации неферромагнитной фазы в ее объеме, что сопровождается уменьшением размеров и плотности высокопроводящих (ферромагнитных) "каналов протекания". Сосуществование включений ферромагнитной (с высокой проводимостью) и парамагнитной (с низкой проводимостью) фаз в объеме манганитной пленки при указанных выше температурах четко проявляется в реакции ее электросопротивления на магнитное поле. Кривые $\rho(H)$, измеренные для пленки LCMO/BSTO/LSATO при T=215 и $100 \, \mathrm{K}$, показаны на вставке рис. 3. Из представленной зависимости $\rho(H,215 \, \mathrm{K})$ следует, что абсо-

лютная величина производной $d\rho/dH$ при $\mu_0 H < 1.5\,\mathrm{T}$ многократно превосходит соответствующие значения, полученные при $\mu_0 H > 3.5 \, \text{T}$. Резкое падение электросопротивления пленки LCMO/BSTO/LSATO с увеличением напряженности магнитного поля ($\mu_0 H < 1.5 \, \mathrm{T}$) обусловлено возрастанием концентрации ферромагнитной фазы (увеличением плотности "каналов протекания"). При $\mu_0 H > 3.5 \,\mathrm{T}$ основная часть объема пленки LCMO/BSTO/LSATO находится в ферромагнитном состоянии, и наблюдаемое относительно слабое (примерно линейное) уменьшение ее электросопротивления с увеличением $\mu_0 H$ обусловлено ослаблением электронмагнонного взаимодействия вследствие пространственного упорядочения электронных спинов на ионах марганца. При низких температурах ($T \le 150 \, \mathrm{K}$) включения парамагнитной фазы составляют незначительную часть объема манганитной пленки уже при H=0, поэтому ее электросопротивление практически линейно изменяется с увеличением $\mu_0 H$ в интервале 0–5 T (вставка на рис. 3). Это хорошо согласуется с соответствующими данными для объемных образцов 3d ферромагнитных металлов [17].

В интервале температуры $T_M - 300\,\mathrm{K}$ электропроводность пленки LCMO следовала соотношению $\ln \rho(H=0) \sim E_A/k_BT$, где $E_A=0.14\,\mathrm{eV}$ (k_B — постоянная Больцмана). Такой характер температурной зависимости сопротивления парамагнитной фазы манганитов ($T>T_C$) может быть обусловлен формированием в их объеме малых поляронов [20,21], подвижность которых экспоненциально возрастает с температурой. Структурные исследования [22] подверждают наличие существенных искажений кристаллической решетки в LCMO при $T>T_C$, которые в значительной степени исчезают при $T<T_C$.

Переходя к анализу полученных данных по магнетосопротивлению пленок LCMO/BSTO/LSATO, следует отметить, что интенсивность электрон-электронного и электрон-фонного взаимодействия не зависит существенно от напряженности магнитного поля [14,17]. Среди механизмов, способствующих понижению электросопротивления пленок LCMO/BSTO/LSATO с увеличением H, следует выделить следующие три: a) при $T < T_{C}$, магнитное поле усиливает затухание спиновых волн, что способствует увеличению времени релаксации носителей заряда (дырок); б) при температурах, близких к T_{C} , магнитное поле увеличивает плотность ферромагнитных высокопроводящих "каналов протекания" в объеме манганитной пленки; в) магнитное поле способствует уменьшению относительной разориентации спинов в межкристаллитных прослойках относительно их ориентации в объеме кристаллитов.

Температурные зависимости магнетосопротивления $MR = [\rho(\mu_0 H) - \rho(0)]/\rho(0)$ для пленки LCMO/BSTO/LSATO, измеренные в магнитном поле 0.4 и 5 T, приведены на рис. 5. При $\mu_0 H = 0.4$ T, максимальные значения отрицательного магнетосопротивления для выращенных манганитных пленок наблюдались

Рис. 5. Температурные зависимости магнетосопротивления $MR = [\rho(\mu_0 H) - \rho(0)]/\rho(0)$ манганитной пленки в гетероструктуре (50 nm)LCMO/(80 nm)BSTO/(001)LSATO, измеренные при $\mu_0 H = 0.4$ и 5 T. Зависимости магнетосопротивления той же пленки от магнитного поля, полученные при температурах 100 и 215 K, показаны на вставке.

в окрестности 205 К. С увеличением H пик на кривой MR(T,H) сдвигался в сторону высоких температур. Ширина пика (измеренная на половине высоты) на зависимости MR(T,H) для пленок LCMO/BSTO/LSATO в несколько раз превышала соответствующее значение для пленок LCMO, выращенных на подложках с малым m [5]. Кроме того, значения MR, полученные для пленок LCMO/BSTO/LSATO при низких температурах $(T < 10 \, \text{K})$ значительно превосходят магнетосопротивление пленок LCMO, выращенных на подложках с малым m и подвергнутых термообработке в кислороде [6]. Данный факт отчасти может быть обусловлен наличием в пленке LCMO/BSTO/LSATO межкристаллитных границ с нарушенной стехиометрией [23].

Зависимости магнетосопротивления LCMO/BSTO/LSATO от магнитного поля при T=215 и $100 \,\mathrm{K}$ приведены на вставке рис. 5. При $T=100 \,\mathrm{K}$ отрицательное MR пленки LCMO/BSTO/LSATO практически линейно возрастало с увеличением $\mu_0 H$, что хорошо согласуется с полученной зависимостью коэффициента ρ_1 (см. соотношение (2)) от напряженности магнитного поля (вставка на рис. 4). Таким образом, при $0 < \mu_0 H < 5 \,\mathrm{T}$ зависимость MR $(H, 100 \,\mathrm{K})$ в значительной степени определяется рассеянием носителей заряда (дырок) на магнонах. При температурах, близких к T_M , влияние рассеяния на магнонах на характер зависимости электросопротивления пленки LCMO/BSTO/LSATO от напряженности магнитного поля становится доминирующим только при $\mu_0 H > 3.5 \,\mathrm{T}$ (вставка на рис. 5, $MR(H,T=215\,\mathrm{K}))$. Аномально резкое возрастание отрицательного магнетосопротивления с ростом H при относительно малой напряженности магнитного поля $(\mu_0 H < 1/5\,\mathrm{T})$ обусловлено в значительной степени увеличением плотности ферромагнитных высокопроводящих "каналов протекания" в объеме манганитной пленки.

4. Заключение

Растягивающие механические напряжения, действующие в процессе зародышеобразования и роста манганитных пленок (50 nm)LCMO, способствуют нарушению стехиометрии последних (обеднение кислородом и/или кальцием), что проявляется в увеличении объема элементарной ячейки и приводит к уменьшению относительной концентрации четырехвалентных ионов марганца. Увеличение концентрации ионов ${\rm Mn^{+3}}$ в манганитной пленке ослабляет ферромагнитное взаимодействие между ионами марганца, реализуемое путем "двойного обмена" электронами между Mn^{+3} и Mn^{+4} с участием иона кислорода. Это, отчасти, является причиной сдвига максимума на температурной зависимости электросопротивления пленки (50 nm)LCMO/(80 nm)BSTO/LSATO в сторону низких температур относительно его положения на кривой $\rho(T, H=0)$ для объемных стехитометрических образцов LCMO. При $T < T_C$ неоднородность механических напряжений, флуктуации плотности вакансий кислорода и вакансий в катионной подрешетке так же, как и азимутальная разориентация кристаллических зерен в пленке LCMO/BSTO/LSATO, усиливают разориентацию электронных спинов на ионах марганца, что увеличивает вклад спиновых волн в процесс релаксации носителей заряда. При температурах вблизи фазового ферромагнитного перехода магнитное поле увеличивает относительную концентрацию включений ферромагнитной фазы в объеме манганитной пленки. Магнитное поле также усиливает затухание спиновых волн, уменьшает пространственную разориентацию электронных спинов на ионах марганца, расположенных в области межкристаллитных границ зерен и в объеме кристаллитов.

Список литературы

- Y. Tokura. In: Colossal Magnetoresistive Oxides / Ed. Y. Tokura. Gordon and Breach Science Publ., Amsterdam, The Netherlands (2000). P. 2.
- [2] S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O'Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Yu. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher. J. Appl. Phys. 85, 8, 5828 (1999).
- [3] A. Goyal, M. Rajeswari, R. Shreekala, S.E. Lofland, S.M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesan. Appl. Phys. Lett. 71, 17, 2535 (1997).

- [4] V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, K. Ghosh, S.D. Tyagi. J. Appl. Phys. 86, 2, 1067 (1999).
- [5] Ю.А. Бойков, Т. Клаесон, А.Ю. Бойков. ЖТФ 71, 10, 54 (2001).
- [6] Ю.А. Бойков, В.А. Данилов, А.Ю. Бойков. ФТТ 45, 4, 649 (2003).
- [7] Yu.A. Boikov, T. Claeson. Physica B **311**, 3–4, 250 (2002).
- [8] C.J. Lu, Z.L. Wang, C. Kwon, Q.X. Jia. J. Appl. Phys. 88, 7, 4032 (2000).
- [9] K.H. Kim, J.Y. Gu, H.S. Choi, G.W. Parjk, T.W. Park, T.W. Noh. Phys. Rev. Lett. 77, 9, 1877 (1996).
- [10] T.I. Kamins. J. Appl. Phys. 49, 9, 4357 (1971).
- [11] A. von Hippel. Rev. Mod. Phys. 22, 3, 221 (1950).
- [12] Ю.А. Бойков, Т. Клаесон, А.Ю. Бойков. ФТТ **45**, *6*, 1040 (2003).
- [13] E.D. Specht, T.E. Clausing, L. Heatherly. J. Mater. Res. 5, 11, 2351 (1990).
- [14] G.J. Snyder, R. Hiskes, S. DiCarolis, M.R. Beasley, T.H. Geballe. Phys. Rev. B 53, 21, 14434 (1996).
- [15] P. Shieffer, A.P. Ramirez, W. Bao, S.-W. Cheong. Phys. Rev. Lett. 75, 18, 3336 (1995).
- [16] L.M. Rodriguez-Martinez, J.P. Attfield. Phys. Rev. B 54, 22, R15622 (1996).
- [17] B. Raquet, M. Viret, J.M. Broto, E. Sondergard, O. Cespedes, R. Many. J. Appl. Phys. 91, 10, 8129 (2002).
- [18] Y.-A. Soh, G. Aeppli, N.D. Mathur, M.G. Blamire. J. Appl. Physh. |bf 87, 9, 6743 (2000).
- [19] K. Kubo, N. Ohata. J. Phys. Soc. Jpn. 33, 1, 21 (1972).
- [20] M. Jaine, M.B. Salamon, M. Rubinstein, R.E. Treece, J.S. Horwitz, D.B. Chrisey. Phys. Rev. B 54, 17, 11 914 (1996).
- [21] G. Zhao, Y.S. Wang, D.J. Kang, W. Prellier, M. Rajeswari, H. Keller, T. Venkatesan, C.W. Chu, R.L. Creene. Phys. Rev. B 62, 18, R11949 (2000).
- [22] P.J. Radaelli, M. Marezio, H.Y. Hwang, S.-W. Cheomg, B. Batlogg. Phys. Rev. B 54, 13, 8992 (196).
- [23] R. Mahesh, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao. Appl. Phys. Lett. 68, 16, 2291 (1996).