Магниторефрактивный эффект в гранулированных сплавах с туннельным магнитосопротивлением

© И.В. Быков, Е.А. Ганьшина, А.Б. Грановский, В.С. Гущин, А.А. Козлов, Т. Масумото*, С. Онума*

Московский государственный университет им. М.В. Ломоносова, 119992 Москва, Россия * The Research Institute for Electric and Magnetic Materials, 2-1-1, Yagiymaminami, Taihakuku, Sendai, 982-0807 Japan

E-mail: granov@magn.ru

(Поступила в Редакцию 20 мая 2004 г.)

В инфракрасной области спектра от 2 до 20 µm исследованы магниторефрактивный эффект (МРЭ) и оптическое отражение в гранулированных сплавах металл–диэлектрик Co–Al–O, Co–Si–O, Co–Ti–O, обладающих для составов вблизи порога перколяции туннельным магнитосопротивлением. Измерены зависимости этих эффектов от частоты, угла падения и поляризации света. Полученные экспериментальные данные свидетельствуют о том, что основным механизмом МРЭ в данных системах является спин-зависящее туннелирование на оптических частотах.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 03-02-16127) и программы "Университеты России".

Магниторефрактивный эффект (МРЭ) является новым магнитооптическим эффектом и состоит в изменении оптических свойств магнетиков с большим магнитосопротивлением (МС) при их намагничивании [1,2]. Подчеркнем, что МРЭ есть частотный аналог МС. Поэтому, с одной стороны, это четный по намагниченности и негиротропный эффект, что отличает его от традиционных магнитооптических явлений, а с другой стороны, именно корреляция с МС (необязательно линейная) отличает его от других возможных магнитоиндуцированных изменений оптических свойств магнитных и немагнитных материалов. Для систем с туннельным МС, ярким примером которых являются гранулированные пленки ферромагнитный металл-диэлектрик с содержанием металла вблизи порога перколяции, следует ожидать, что природа МРЭ связана со спин-зависящим туннелированием на оптических частотах [1,2].

МРЭ в гранулированных пленках металл-диэлектрик (или нанокомпозитах) был обнаружен в [3] и затем исследовался в целом ряде работ [1,2,4–6]; полученные данные в основном соответствуют указанному представлению о МРЭ и развитой теории [1,7]. МРЭ в нанокомпозитах примерно на два порядка больше традиционных магнитооптических эффектов. Для образца (CoFe)-(MgF) с объемной концентрацией магнитной фазы 48% МРЭ при комнатной температуре достигает 1.5% [5]. Это значение, по имеющимся у нас данным, является рекордным. Однако, ряд вопросов остается либо невыясненным, либо дискуссионным. В частности, экспериментально не подтверждена корреляция между полевыми зависимостями МРЭ и МС, не выяснена роль диэлектрической матрицы в формировании эффекта (в недавней работе [6] значительный МРЭ был найден при определенных частотах для немагнитного кристаллического диэлектрика Al₂O₃), до конца не изучены зависимости МРЭ от поляризации и угла падения света.

Наконец не было предпринято попыток количественной проверки теории МРЭ в нанокомпозитах. Исследованию этих вопросов и посвяшена настоящая работа.

Образцы, методы исследования и детали эксперимента

Тонкопленочные нанокомпозиты ферромагнитный металл-диэлектрик Co–Al–O, Co–Si–O и Co–Ti–O были получены методом тандемного радиочастотного магнетронного распыления в атмосфере аргона (~8 mTorr) мишеней металла Co и диэлектрика на неохлаждаемые подложки из стекла Corning glass № 7059. Составы исследованных образцов, значения их толщин, величин МС и МРЭ, полученных в данных исследованиях в полях 10 и 1.6 kOe соответственно, приводятся в таблице. Детальное описание процедуры приготовления образцов, методы и результаты измерений их химического состава, структурных, электрических и магнитных параметров приведены в [8,9]. Всюду (в таблице и в тексте) дано объемное содержание компонентов.

Составы исследованных образцов, значения их толщин, величины магнитосопротивления и магниторефрактивного эффекта

Составы	Толщина	MC, %	МРЭ (1.6 kOe)	
образцов	пленок, μ m	(10 kOe)	$\xi(v), \%$	ν , cm ⁻¹
Co ₄₃ Al ₂₂ O ₃₅ *	2	8.5	0.8	1100
Co _{50.3} Al _{20.4} O _{29.3}	2.62	9.2	-1.0	1200
Co _{51.5} Al _{19.5} O ₂₉	1.91	9.2	-0.9	1100
Co55.2Al19O25.8	2.62	4.8	-0.6	1000
Co _{52.3} Si _{12.2} O _{35.5}	1.67	4.1	+0.7	1300
Co _{50.2} Ti _{9.1} O _{40.7}	2.02	5.8	-0.7	1030

* at.%

Спектры оптического отражения R(v) и магниторефрактивного эффекта в отраженном свете $\xi(v)$ изучались в широком интервале длин волн от 2 до 20 μ m (5000–500 cm⁻¹) с помощью серийного Фурье-спектрометра FTIR PU9800 со спектральным разрешением $Res \sim 4 \text{ cm}^{-1}$. Все представленные далее спектры коэффициентов отражения нормированы по спектрам золотого зеркала. МРЭ находился как отношение изменений интенсивности отраженного излучения при намагничивании образца в его плоскости к интенсивности излучения, отраженного образцом в размагниченном состоянии

$$\xi(\nu, H) = \frac{\Delta R}{R} = \frac{R(\nu, H = 0) - R(\nu, H)}{R(\nu, H = 0)};$$
 (1)

где R(v, H = 0), R(v, H) — значения коэффициента отражения образца в размагниченном состоянии и в поле H.

Магниторефрактивный эффект измерялся на установке, описанной в [1,5], в магнитооптическую приставку которой был внесен ряд изменений, касающихся асферических зеркал, замена которых на плоские позволила проводить измерения МРЭ не только при падении излучения, близкому к нормальному ($\phi \sim 8^{\circ}$), но и при углах 20 и 45°. Конструкционные особенности электромагнита не позволили увеличить угол падения света. Для поляризации излучения использовался сеточный поляризатор KRS-5, который вводился в падающий луч (до магнита) и также располагался в магнитооптическом модуле установки.

Результирующий спектр эффекта получался при усреднении 600–1000 сканов. Уровень шумов составлял $1 \cdot 10^{-4}$ в области 1000–3000 сm⁻¹ и $3 \cdot 10^{-4}$ в остальном интервале частот.

Все измерения в настоящей работе выполнены при комнатной температуре.

Экспериментальные результаты и их обсуждение

Принципиально важным для выяснения природы МРЭ в нанокомпозитах является экспериментальное подверждение того, что МРЭ в этих системах связан с туннельным МС, а не является следствием каких-либо других причин, например, четных и нечетных магнитооптических эффектов Керра или влияния магнитного поля на оптические свойства диэлектрической матрицы. Одним из прямых доказательств может служить проверка корреляции между полевыми зависимостями МРЭ и МС, измеренными на одних и тех же образцах в постоянном магнитном поле, изменяющемся от 0 до 2.2 kOe [3]. Рис. 1, на котором для примера приведены экспериментальные данные для нанокомпозита Со₄₃Al₂₂O₃₅, демонстрирует хорошее совпадение кривых полевой зависимости МРЭ и МС, что подверждает правильность соотношений, полученных в [4,10].

Для того чтобы продемонстрировать, что МРЭ не связан с нечетными магнитооптическими эффектами, в настоящей работе параметр МРЭ определялся как среднее арифметическое из ряда измерений при двух противоположных направлениях поля. Измерения МРЭ, проведенные в поляризованном свете при различных ориентациях внешнего магнитного поля Н по отношению к плоскости поляризации света — H || M, E \perp M и Н || М, Е || М (М — вектор намагниченности, Е вектор напряженности электрического поля световой волны, *р*-волна), также не выявили каких-либо отличий спектров МРЭ в экваториальной и меридианальной геометрии. Этот результат представлен на рис. 2 для нанокомпозита Co_{50.3}Al_{20.4}O_{29.3}, на котором данные по магниторефрактивному отклику получены для угла падения света $\phi = 45^{\circ}$.

Рис. 1. Полевая зависимость магниторефрактивного эффекта и магнитоосопротивления нанокомпозита $Co_{43}Al_{22}O_{35}$; $\phi = 10^{\circ}$; $\nu = 1130$ cm⁻¹.

Рис. 2. Дисперсия МРЭ нанокомпозита $Co_{50.3}Al_{20.4}O_{29.3}$ на *p*-компоненте линейно-поляризованного света при экваториальном (штриховая линия) и меридианальном (сплошная линия) намагничивании образца; $\phi = 45^{\circ}$.

Рис. 3. Дисперсия МРЭ (сплошная линия) и коэффициента отражения R (штриховая) для *s*- и *p*-поляризованного света композита Co_{51.5}Al_{19.5}O₂₉; H = 1600 Oe; $\phi = 45^{\circ}$. a — эксперимент, b — теоретический расчет.

Обнаружение в узком диапазоне длин волн в окрестности $\lambda = 9 \,\mu m$ при угле падения $\phi = 65^{\circ}$ р-поляризованного света значительного магнитоиндуцированного изменения оптических свойств Al₂O₃ [6], которое авторы называют также МРЭ, требует отдельного анализа. Следует заметить, что указанные условия наблюдения ($\lambda = 9 \,\mu m$, $\phi = 65^{\circ}$) соответствуют весьма малому отражению, при которых в силу флуктуаций более правомерным было бы измерять разность ΔR , а не параметр МРЭ. Были выполнены измерения и ξ, и ΔR для монокристаллического Al₂O₃ во всем исследуемом спектральном диапазоне в полях до 1.6 kOe и для углов падения света 8-45° (частотная зависимость оптического отражения R(v) сапфира приведена на рис. 5); в пределах погрешности измерений отличий в спектральных зависимостях коэффициента отражения света при намагничивании образца найдено не было. Отсюда можно с уверенностью заключить, что в наших условиях эксперимента ($\phi = 45^{\circ}$, на *p*- и *s*-компонентах, H = 1.6 kOe) диэлектрическая матрица Al₂O₃ заведомо не вносит вклада в измеряемый сигнал MPЭ. Кроме того, магнитооптические исследования нанокомпозитов кобальта, внедренного в различные матрицы (см. таблицу), также не выявили дополнительных вкладов диэлектрической матрицы в MPЭ. Очевидно, что материал кристаллической диэлектрической матрицы (Al₂O₃, SiO₂, TiO₂) влияет на оптические параметры нанокомпозита и туннельное MC, косвенно изменяя и MPЭ, что детально анализируется далее. Также можно ожидать, что растворенные в матрице примеси или наличие локализованных состояний могут привести к усилению MC и соответственно к возрастанию MPЭ, однако, таких эффектов выявлено не было.

На рис. 3, а представлены спектры частотной зависимости МРЭ и оптического отражения для s- и р-компонент линейно-поляризованного света нанокомпозита Co_{51.5}Al_{19.5}O₂₉; угол падения $\phi = 45^{\circ}$. Наибольшие значения эффекта наблюдаются в окрестности частоты $\nu \sim 1100 \, {
m cm}^{-1}$ и составляют $\xi_p = 0.9\%$ для *р*-компоненты и $\xi_s = 0.53\%$ на *s*-поляризации. Аналогичные результаты получены для нанокомпозита практически такого же состава Co_{50.3}Al_{20.4}O_{29.3} и с таким же значением МС (рис. 4 и таблица). Как следует из рис. 5, для данного образца на частоте $\nu \simeq 1200 \, {\rm cm}^{-1}$ абсолютная величина МРЭ на *р*-компоненте достигает 1%. Большие значения МРЭ всех исследуемых нанокомпозитов на p- и s-компонентах линейно-поляризованного света приходятся на область частот $800-1800 \,\mathrm{cm}^{-1}$, в которой наблюдаются минимумы и максимумы коэффициентов отражения $R(\nu)$ (рис. 3, *a*).

В настоящих экспериментах проведены исследования угловой зависимости МРЭ всех изучаемых образцов, показано, что абсолютные значения эффекта на *p*-компоненте несколько выше, чем на *s*-компоненте. При переходе к большим углам падения света (до 45° в наших экспериментах) значения МРЭ на

Рис. 4. Дисперсия МРЭ нанокомпозита Co_{50.3}Al_{20.4}O_{29.3} на *р*-компоненте линейно-поляризованного света для трех углов падения света.

Рис. 5. Дисперсия МРЭ и коэффициентов отражения R для p-поляризованного света нанокомпозитов Co_{51.5}Al_{19.5}O₂₉ (1), Co_{50.3}Al_{20.4}O_{29.3} (2), Co_{55.2}Al₁₉O_{25.8} (3) и Al₂O₃ (4); $\phi = 45^{\circ}$.

s-компоненте уменьшаются, тогда как на *p*-компоненте ξ_p практически не меняется. На рис. 4 для примера приведены спектры частотной зависимости $\xi(\nu)$ *p*-волны линейно-поляризованного света для нанокомпозита Co_{50.3}Al_{20.4}O_{29.3} при трех углах падения. Аналогичные спектры получены для других образцов. Из рис. 3, *a* также видно, что при $\phi = 45^{\circ}$ значения ξ_s (образец Co_{51.5}Al_{19.5}O₂₉) несколько меньше, чем ξ_p . Таким образом, полученные экспериментальные данные относительно угловой и поляризационной зависимости МРЭ находятся в хорошем согласии с результатами теоретического анализа [7].

В спектрах частотной зависимости коэффициентов отражения и МРЭ (рис. 5) ряда нанокомпозитов наблюдаются осцилляции. Периоды осцилляций в общих чертах совпадают, какой-либо зависимости их длительности от состава образца установлено не было. Более тонкому образцу Со_{51.5}Аl_{19.5}О₂₉ соответствует больший период осцилляций как в МРЭ, так и в коэффициенте отражения. По характеру дисперсии спектров R(v) и $\xi(v)$ и на основании значений величины периодов осцилляций, полученных в теоретических оценках (рис. 3, b) с учетом реальных толщин и комплексных показателей преломления данных нанокомпозитов, можно однозначно утверждать, что осцилляции R(v) и особенно $\xi(v)$ имеют интерференционное происхождение. Об этом говорят и результаты исследования спектров образцов с наночастицами ферромагнетика в различных диэлектрических матрицах.

Спектры частотных зависимостей МРЭ и оптического отражения нанокластеров Со, входящих в матрицы оксидов кремния, титана, алюминия, приведены на рис. 6. В спектрах отражения всех образцов выявляется ряд фононных мод диэлектрической матрицы и соответствующие им всплески магниторефрактивного эффекта. Максимальные значения МРЭ нанокомпозита Co_{52.3}Si_{12.2}O_{35.5} на *р*-волне линейно-поляризованного света, достигающие $\xi_{v}=0.7\%$ при коэффициенте отражения $R \simeq 0.5\%$, приходятся на область частот 1250-1320 cm⁻¹. Значение МРЭ этого нанокомпозита на *s*-компоненте в этом же диапазоне длин волн при большей величине коэффициента отражения ($R \sim 3\%$) не превосходит 0.3%. Подобное поведение спектров МРЭ и оптического отражения наблюдается и для гранулированных нанокомпозитов ферромагнитного Со, внедренного в матрицы TiO₂ и Al₂O₃. Более ярко периодические изменения проявляются в магнитооптических спектрах, т.е. при воздействии на ферромагнитный нанокомпозит магнитного поля, обнаруживая интерференционный характер рассматриваемых явлений. Отметим также тот факт, что знак МРЭ нанокомпозита Со52.3Si12.2O35.5 в отличие от знака эффекта других образцов положительный. В этом образце наблюдается большое магнитосопротивление (4.1%). Однако, по данным, полученным с помощью экваториального эффекта Керра (вставка на рис. 6) в видимом диапазоне длин волн, ход кривой намагничивания этого образца соответствует состоянию образца, еще не достигшему порога перколяции. Подобное изменение знака МРЭ в гранулированных пленках $(Co_{50}Fe_{50})_x(Al_2O_3)_{100-x}$ в доперколяционной области отмечено в [6].

Описываемые результаты могут быть объяснены в рамках развиваемой модели [1,5] с учетом затухания

Рис. 6. Дисперсия МРЭ и *R* для *p*-поляризованного света нанокомпозитов Co_{52.3}Si_{12.2}O_{35.5} (*1*), Co_{50.2}Ti_{9.1}O_{40.7} (*2*), Co_{55.2}Al₁₉O_{25.8} (*3*); $\phi = 45^{\circ}$. На вставке даны спектры полевой зависимости экваториального эффекта Керра δ , приведенные к максимальным значениям эффекта δ_s , полученным в поле H = 2.25 kOe.

Рис. 7. Схема хода лучей в системе воздух-пленка-подложкавоздух.

и эффектов интерференции в слоях нанокомпозита и подложки. Именно при учете оптических параметров материала подложки достигаются наилучшие количественные соответствия теории и эксперимента.

Рассмотрим четырехслойную систему (рис. 7), состоящую из пленки нанокомпозита (толщина пленки d_2 и комплексный показатель преломления $\eta_2 = n_2^0 - ik_2^0$), напыленной на подложку (d_3 , $\eta_3 = n_3 - ik_3$) и находящуюся в вакууме ($n_{1,4} = 1$, $k_{1,4} = 0$). Известно [11], что коэффициенты отражения r и пропускания t для s- и p-поляризованных волн на границе раздела j-й и k-й сред с комплексными показателями преломления η_j и η_k записываются в виде

$$r_{jk}^{p} = \frac{g_{j}\eta_{k}^{2} - g_{k}\eta_{j}^{2}}{g_{j}\eta_{k}^{2} + g_{k}\eta_{j}^{2}}, \quad r_{jk}^{s} = \frac{g_{j} - g_{k}}{g_{j} + g_{k}},$$
$$t_{jk}^{p} = \frac{2g_{j}\eta_{k}\eta_{j}}{g_{i}\eta_{k}^{2} + g_{k}\eta_{j}^{2}}, \quad t_{jk}^{s} = \frac{2g_{j}}{g_{j} + g_{k}}, \quad (2)$$

где

$$g_{j(k)} = \sqrt{\eta_{j(k)}^2 - \eta_1^2 \sin^2 \phi_0}.$$

Для коэффициентов отражения $R^{p(s)}$ и пропускания $T^{p(s)}$ четырехслойной системы имеют место следующие рекуррентные формулы:

$$R^{p(s)} = |r_{jklm}^{p(s)}|^{2}, \quad T^{p(s)} = |t_{jklm}^{p(s)}|^{2},$$

$$r_{jklm}^{p(s)} = \frac{r_{jk}^{p(s)} + F_{k}^{2} r_{klm}^{p(s)}}{1 + F_{k}^{2} r_{jk}^{p(s)} r_{klm}^{p(s)}}, \quad t_{jklm}^{p(s)} = \frac{t_{jk}^{p(s)} + t_{klm}^{p(s)} F_{k}}{1 + F_{k}^{2} r_{jk}^{p(s)} r_{klm}^{p(s)}},$$

$$r_{jkl}^{p(s)} = \frac{r_{jk}^{p(s)} + F_{k}^{2} r_{kl}^{p(s)}}{1 + F_{k}^{2} r_{jk}^{p(s)} r_{kl}^{p(s)}}, \quad t_{jkl}^{p(s)} = \frac{t_{jk}^{p(s)} + t_{kl}^{p(s)} F_{k}}{1 + F_{k}^{2} r_{jk}^{p(s)} r_{kl}^{p(s)}},$$

$$F_{k} = \exp(-2\pi i \nu g_{k} d_{k}), \quad (3)$$

где j, k, l, m — номера сред; F_k — фазовый множитель k-го слоя, ответственный за интерференцию и затухание излучения в пленке и подложке; $\nu = 1/\lambda$ — волновое число.

Как следует из теории МРЭ, величины показателя преломления n_2 и коэффициента экстинции k_2 пленки нанокомпозита при намагничивании образца записываются в виде [1]

$$n_{2} = n_{2}^{0} \left(1 + \frac{\Delta \rho}{\rho} \frac{(k_{2}^{0})^{2}}{(k_{2}^{0})^{2} + (n_{2}^{0})^{2}} \right),$$

$$k_{2} = k_{2}^{0} \left(1 + \frac{\Delta \rho}{\rho} \frac{(n_{2}^{0})^{2}}{(k_{2}^{0})^{2} + (n_{2}^{0})^{2}} \right), \tag{4}$$

где $\Delta \rho / \rho$ — абсолютное значение MC, соответствующее магнитному полю *H*. Выражения (2)–(3) совместно с формулами для оптических параметров пленки (4) полностью определяют МРЭ и оптическое отражение нанокомпозита для *p*- и *s*-компонент поляризованного света.

Для определения оптических параметров нанокомпозита Co_{51.5}Al_{19.5}O₂₉ проведены измерения спектров пропускания T(v) ($\phi = 0^{\circ}$), отражения на *s*-компоненте поляризованного света $R^{s}(v)$ ($\phi = 20^{\circ}$) ферромагнитного образца и стеклянной подложки (рис. 8). Путем решения обратной задачи определялись оптические постоянные n_i , k_i образца и подложки. Подложка в области 3000-6000 cm⁻¹ имеет небольшой коэффициент экстинции $k_3 \sim 10^{-4} - 10^{-5}$ при показателе преломления n_3 , изменяющемся в пределах от 1.5 до 1.3. В области частот ниже 2000 cm⁻¹ показатель поглощения подложки существенно возрастает, что не позволило точно

Рис. 8. Частотная зависимость коэффициентов пропускания и отражения подложки: T_{sub} , R_{sub}^{s} (штриховая линия) и образца $Co_{51.5}Al_{19.5}O_{29}$: T_{film} , R_{film}^{s} (сплошная линия).

Рис. 9. Дисперсия показателя преломления n_2 и коэффициента экстинции k_2 пленки Co_{51.5}Al_{19.5}O₂₉.

определить оптические константы в этой области спектра. Центр полосы поглощения матрицы Al_2O_3 в нанокомпозите $Co_{51.5}Al_{19.5}O_{29}$ приходится на $\nu \sim 1025$ cm⁻¹. В чистом образце Al_2O_3 , по данным [12], эта полоса смещена в низкочастотную область до 950 cm⁻¹. На рис. 9 приведена дисперсия показателя преломления n_2 и коэффициента экстинции k_2 рассматриваемого нанокомпозита. Штриховкой изображен разброс возможных значений оптических констант, получаемых в расчетах при учете погрешностей экспериментально определяемых коэффициентов отражения и прохождения.

Определенные экспериментально оптические параметры и значения магнитосопротивления использовались для расчета МРЭ по формулам (2)–(4). Результаты расчетов спектров оптического отражения и МРЭ для H = 1600 Ое при $\phi = 45^{\circ}$ представлены на рис. 3, b. И по структуре, и по величине значений $\xi(v)$ и R(v)рассчитанные спектры хорошо коррелируют с экспериментальными данными (рис. 3, *a*). Как в спектрах R(v), так и $\xi(v)$ наблюдаются осцилляции этих эффектов с периодичностью $\simeq 700$ сm⁻¹, обусловленные интерференцией. В районе полосы поглощения наблюдается резкая смена знака эффекта. Эти экспериментальные особенности хорошо описываются теорией.

Полученные экспериментальные данные для полевой, угловой, поляризационной, частотной зависимости МРЭ в гранулированных сплавах металл-диэлектрик Со-Al-O, Co-Si-O, Co-Ti-O находятся в полном соответствии с развитыми представлениями о природе МРЭ в системах с туннельными контактами, базирующимися на высокочастотном спин-зависящем туннелировании. Простая модель МРЭ, основанная на описании туннельного контакта между гранулами перколяционного кластера в виде параллельно соединенных емкости и туннельного сопротивления, при учете дисперсии оптических параметров пленки и подложки, а также процессов интерференции света позволяет на количественном уровне объяснить наблюдаемые закономерности. Это свидетельствует о том, что спин-зависящее туннелирование существует вплоть до оптических частот. Величина МРЭ в нанокомпозитах сложным образом зависит от многих факторов и в первую очередь от МС и оптических параметров, и поэтому изменяется в достаточно широких пределах от 0.1 до 1.5%. Поскольку возможности повышения магнитосопротивления в нанокомпозитах в слабых полях практически исчерпаны, представляется важным как для повышения магниторефрактивного эффекта, так и для проверки теории исследовать магниторефрактивный эффект в спин-вентильных туннельных контактах.

Список литературы

- А.Б. Грановский, И.В. Быков, Е.А. Ганьшина, В.С. Гущин, М. Инуе, Ю.Е. Калинин, А.А. Козлов, А.Н. Юрасов. ЖЭТФ 123, 6, 1256 (2003).
- [2] A. Granovsky, M. Inoue. J. Magn. Magn. Mater. 272–276, Supl. 1, E1601 (2004).
- [3] И.В. Быков, Е.А. Ганьшина, А.Б. Грановский, В.С. Гущин. ФТТ 42, 3, 487 (2000).
- [4] D. Bozec, V.G. Kravets, J.A.D. Matthew, S.M. Thompson. J. Appl. Phys. 91, 10, 8795 (2002).
- [5] А.Б. Грановский, В.С. Гущин, И.В. Быков, Н. Кобаяши, А.А. Козлов, С. Онума, Т. Масумото, М. Инуе. ФТТ 45, 5, 867 (2003).
- [6] В.Г. Кравец, А.Н. Погорелый, А.Ф. Кравец, А.Я. Вовк, Ю.И. Джежеря. ФТТ 45, 8, 1456 (2004).
- [7] А.Б. Грановский, М. Инуе, Ж.П. Клерк, А.Н. Юрасов. ФТТ 46, 3, 484 (2004).
- [8] N. Kobayashi, S. Ohnuma, T. Masumoto, H. Fujimori. J. Appl. Phys. 90, 4159 (2001).
- [9] S. Ohnuma, K. Hono, E. Abe, H. Onodera, S. Mitani, H. Fujimori. J. Appl. Phys. 82, 11, 5646 (1997).
- [10] А.Б. Грановский, М.В. Кузьмичев, Ж.П. Клерк. ЖЭТФ 116 5(11), 1762 (1999).
- [11] В.М. Маевский. ФММ 59, 2, 213 (1985).
- [12] P. Bruesch, R. Kotz, H. Neff, L. Pietronero. Phys. Rev. B 29, 8, 4691 (1984).