О зависимости времени релаксации намагниченности однодоменных ферромагнитных частиц от коэффициента затухания в модели Брауна

© Ю.П. Калмыков, В.Т. Коффи*, С.В. Титов**

Lab. Mathématiques et Physique pour les Systémes, Université de Perpignan, 66860 Perpignan Cedex, France * Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland ** Институт радиотехники и электроники Российской академии наук, 141190 Фрязино, Московская обл., Россия E-mails: kalmykov@univ-perp.fr

wcoffey@mee.tcd.ie svt245@ire216.msk.su

(Поступила в Редакцию 20 января 2004 г. В окончательной редакции 27 апреля 2004 г.)

Получены аналитические выражения для времени релаксации намагниченности τ однодоменных ферромагнитных частиц с кубической анизотропией и с одноосной анизотропией в присутствии постоянного поперечного поля. Вывод этих выражений основан на использовании метода расчета скорости выхода броуновской частицы из потенциальной ямы, применимого при любых значениях коэффициента затухания, а также на обобщении этого метода на случай магнитной релаксации суперпарамагнитных частиц. Применимость полученных выражений для расчета τ проиллюстрирована сравнением с результатами численного решения стохастического уравнения Ландау–Лифшица–Гильберта во всем диапазоне изменения коэффициента диссипации (при слабом, умеренном и сильном затухании, а также в промежуточной области между слабым и умеренным затуханием).

Работа выполнена при поддержке INTAS (проект N 01-2341).

1. Введение

Для достижения высокой плотности магнитной записи требуется максимально уменьшить размер магнитных частиц, являющихся носителями информации. Однако, с уменьшением размеров частицы до нескольких нанометров, усиливается влияние тепловых флуктуаций на магнитные свойства частицы [1]. Именно тепловые флуктуации определяют время релаксации намагниченности наночастицы, что в свою очередь сказывается на надежности хранения информации. Тепловая нестабильность намагниченности обусловливает явление суперпарамагнетизма [1-3], поскольку каждая частица ведет себя как парамагнитный атом с магнитным моментом $\sim 10^4 - 10^5$ магнетонов Бора. Динамика намагниченности М суперпарамагнитных частиц аналогична броуновскому вращению макромолекулы в жидкости и описывается (в контексте диффузионной модели Брауна [3,4]) уравнением Фоккера–Планка для функции распределения $W(\mathbf{M}, t)$ намагниченности

$$\frac{\partial}{\partial t}W = L_{\rm FP}W$$
$$= \frac{1}{2\tau_N} \Big\{ \beta \big[\alpha^{-1} \mathbf{u} (\nabla V \times \nabla W) + \nabla (W \nabla V) \big] + \Delta W \Big\}.$$
(1)

Здесь $L_{\rm FP}$ — оператор Фоккера-Планка, Δ и ∇ — операторы Лапласа и градиента на поверхности единичной сферы, V — плотность свободной энергии частицы, **u** —

единичный вектор вдоль вектора намагниченности **M**, $\beta = v/kT$, v — объем частицы, k — постоянная Больцмана, T — температура,

$$\pi_N = \beta M_S (1 + \alpha^2) / (2\gamma \alpha) \tag{2}$$

— характеристическое (диффузионное) время, M_S намагниченность материала частицы, $\alpha = \gamma \eta M_S$ — безразмерный коэффициент затухания, характеризующий интенсивность тепловых флуктуаций, γ — гиромагнитное отношение, η — коэффициент трения. Уравнение Фоккера–Планка (1) выводится из уравнения Ландау и Лифшица [5] или из аналогичного уравненния Гильберта [6] с флуктуирующим полем **h**(*t*), которое учитывает тепловые флуктуации намагниченности индивидуальной частицы (уравнение Ланжевена)

$$\dot{\mathbf{M}}(t) = \gamma \left\{ \mathbf{M}(t) \times \left[\mathbf{H}(t) + \mathbf{h}(t) - \eta \dot{\mathbf{M}}(t) \right] \right\}, \qquad (3)$$

где магнитное поле $\mathbf{H} = -\partial V/\partial \mathbf{M}$ включает в себя внешние поля и поле магнитной анизотропии. По порядку величины амплитуду $\mathbf{h}(t)$ можно оценить как $(\beta M_S)^{-1}$, что дает при комнатной температуре величину ≥ 100 Ос (таким образом, случайное поле соизмеримо с полем анизотропии) [7]. При выводе (1) предполагалось, что намагниченность \mathbf{M} всегда однородна, изменяется только ее направление (но не величина); кроме того, не учитывались межчастичные взаимодействия и эффекты памяти. Детальное обсуждение области применимости уравнений Фоккера–Планка (1) и Гильберта (3) можно найти, например, в [4,7–9]. Для оценки времени релаксации намагниченности Браун [3,4] обобщил метод Крамерса [10] расчета скорости выхода (escape rate) Γ броуновской частицы из потенциальной ямы с высотой барьера ΔU

$$\Gamma = A \, \frac{\omega_a}{2\pi} \, e^{-\Delta U/kT},\tag{4}$$

где ω_a — угловая частота колебательного движения броуновской частицы на дне потенциальной ямы [11,12], а множитель А характеризует энергетический обмен частицы с окружением. Основная идея метода Крамерса заключается в вычислении множителя А в (4) для различных режимов диссипации, а именно слабой, сильной и промежуточной диссипации. Крамерс [10] вывел формулы для скорости выхода Г броуновской частицы из потенциальной ямы как для умеренного и сильного, так и для слабого затухания (в обоих случаях предполагая, что высота потенциального барьера ΔU много больше тепловой энергии). Крамерс, однако, не смог получить формулу, справедливую во всем диапазоне измерения параметра затухания. Эта проблема была решена позднее Мельниковым и Мешковым [13,14], которые вывели такую универсальную формулу для Г. Идея их метода заключается в преобразовании уравнения Фоккера-Планка к интегральному уравнению Винера-Хопфа. Для этого осуществляется переход к новым переменным (энергия, действие). При этом энергетическая функция распределения рассматривается при заданном значении действия S, которое в данном случае выступает как параметр. Решение уравнения Винера-Хопфа затем находится в явном виде. Это решение позволяет рассчитать скорость выхода Г во всей области изменения параметра диссипации [13,14].

Используя метод Крамерса для расчета время релаксации $\tau \sim \Gamma^{-1}$ продольной компоненты намагниченности М_Z, Браун в своей первой работе [3] ограничился рассмотрением аксиально-симметричного потенциала магнито-кристаллической анизотропии. В этом случае продольные и поперечные моды вращательного движения М могут рассматриваться независимо, причем продольные моды характеризуются только полярным углом ϑ (азимутальный угол φ описывает прецессионное движение M), а плотность вероятности W является функцией только одной переменной ϑ . Только в этом случае теория Крамерса [10], разработанная для механической броуновской частицы в случае сильной диссипации, может быть применена для расчета т при всех значениях коэффициента затухания α. Следует, однако, отметить, что одномерное уравнение Фоккера-Планка для плотности вероятности W распределения M_Z является следствием не сильного затухания, как для броуновской частицы, а аксиальной симметрии свободной энергии V. В случаях когда плотность свободной энергии $V(\vartheta, \phi)$ не обладает аксиальной симметрией, расчет скорости переориентации намагниченности М суперпарамагнитных частиц отличается в ряде существенных деталей от расчета скорости выхода для механической броуновской частицы. Во-первых, свободная энергия магнитной частицы характеризуется двумя степенями свободы ϑ и φ и в общем случае не допускает разделения переменных. Во-вторых, намагниченность частицы не обладает инерцией, а уравнение для намагниченности содержит гиромагнитный член. Именно гиромагнитным членом обусловлена взаимосвязь продольных и поперечных мод при отсутствии аксиальной симметрии свободной энергии. По аналогии с механической броуновской частицей здесь также можно выделить три области изменения α [12]:

(i) $\alpha \ge 1$ — умеренное и сильное затухание (intermediate-to-high damping, IHD). В этом случае функция распределения в потенциальной яме является почти равновесной (больцмановской). Слабое отличие наблюдается на высоте барьера в силу утечки частиц через барьер.

(ii) $\alpha \ll 1$ — очень слабое затухание (very low damping, VLD). Здесь в уравнении Фоккера–Планка (1) можно перейти к новым переменным действие (медленная переменная)–угол (быстрая переменная) и затем усреднить функцию распределения по быстрой переменной вдоль траекторий прецессионного движения в потенциальной яме.

(iii) $0.01 < \alpha \leq 1$ — промежуточная (crossover) область. В этой области не применимы формулы ни для слабого, ни для умеренного и сильного затухания. В частности в отличие от области слабого затухания здесь невозможно провести усреднение по быстрой переменной.

Для магнитных частиц расчетная формула для скорости переориентации намагниченности Г при умеренном и сильном затухании ($\alpha \ge 1$) была получена Смитом и де Розарио [15] и Брауном [4]. Соответствующая формула в случае слабого затухания ($\alpha \ll 1$) была выведена Кликом и Гунтером [9]. (Следует заметить, что метод расчета Г для IHD области [4,15] является частным случаем теории Лангера расчета временных характеристик релаксационных процессов в метастабильных состояниях для систем со многими степенями свободы [16]). В работах [12,17] обобщен метод Мельникова и Мешкова [13] для расчета скорости переориентации намагниченности Г магнитных частиц в промежуточной области, $0.01 < \alpha < 1$. Метод [12,17] позволяет рассчитать Г во всей области изменения коэффициента затухания а. В настоящей работе этот метод применен в двух частных случаях: кубической анизотропии и одноосной анизотропии в присутствии поперечного магнитного поля [12,17]. В этих случаях свободная энергия V имеет эквивалентные метастабильные состояния, что существенно упрощает расчеты (случай неэквивалентных состояний будет рассмотрен в другой работе). Времена релаксации для подобных систем в областях IHD и VLD рассчитывались, например, в [4,9,15,18,19]. Однако, согласно экспериментальным и теоретическим оценкам значения параметра затухания α лежат в промежуточном диапазоне 0.01-0.1 (см., например, [8,9,20,21]). Как уже отмечалось, в этой области ни IHD, ни VLD формулы не пригодны для количественных оценок [22,23]. В данной работе выведены выражения для времени релаксации намагниченности, справедливые во всем диапазоне изменения α. Точность полученных выражений продемонстрирована путем сравнения с результатами численного решения уравнения Фоккера– Планка (1).

2. Основные соотношения

Предположим, что плотность свободной энергии $V(\mathbf{M})$ однодоменной ферромагнитной частицы имеет минимумы в направлениях \mathbf{n}_i и \mathbf{n}_j , разделенные потенциальным барьером с седловой точкой (точкой перевала) в направлении \mathbf{n}_0 (величина барьера предполагается много большей, чем тепловая энергия). Пусть

$$u_1^{(k)} = \sin \vartheta_k \cos \varphi_k, \quad u_2^{(k)} = \sin \vartheta_k \sin \varphi_k, \quad u_3^{(k)} = \cos \vartheta_k$$

— направляющие косинусы вектора **M** относительно системы координат с началом в стационарной точке k (k = 0, i, j) с осью z, перпендикулярной к поверхности $V(\mathbf{M})$. Тогда $V(\mathbf{M})$ в точке \mathbf{n}_k может быть разложена в ряд Тейлора по степеням $u_1^{(k)}$ и $u_2^{(k)}$. С точностью до членов второго порядка это разложение будет иметь вид [4,24]

$$V = V_k + \frac{1}{2} \Big[c_1^{(k)} (u_1^{(k)})^2 + c_2^{(k)} (u_2^{(k)})^2 \Big],$$
(5)

$$c_1^{(k)} = \frac{\partial^2 V}{\partial u_1^{(k)2}}, \quad c_2^{(k)} = \frac{\partial^2 V}{\partial u_2^{(k)2}}.$$

После подстановки (5) в (1) решение уравнения Фоккера–Планка может быть найдено вблизи точки перевала [4]. Это решение позволяет рассчитать скорость выхода при умеренном и сильном затухании Γ_{ij}^{IHD} из *i*-й потенциальной ямы [4,12,24]

$$\Gamma_{ij}^{\text{IHD}} \sim \frac{\Omega_0 \omega_i}{2\pi\omega_0} e^{-\beta(V_0 - V_i)},\tag{6}$$

где $\omega_i = \gamma/M_S \sqrt{c_1^{(i)} c_2^{(i)}}$ и $\omega_0 = \gamma/M_S \sqrt{-c_1^{(0)} c_2^{(0)}}$ — угловые частоты либрационного движения **М** на дне ямы и в седловой точке соответственно и

$$\Omega_0 = \frac{\beta}{4\tau_N} \left[-c_1^{(0)} - c_2^{(0)} + \sqrt{(c_2^{(0)} - c_1^{(0)})^2 - 4\alpha^{-2}c_1^{(0)}c_2^{(0)}} \right]$$

При слабом затухании ($\alpha \ll 1$ или более точно $\alpha < 0.001$, согласно численным расчетам [22,23]) выражение для скорости выхода Γ_{ij}^{VLD} из *i*-й потенциальной ямы было получено в [9] (см. также обзор [12]). Это выражение имеет вид

$$\Gamma_{ij}^{\text{VLD}} \sim \frac{\omega_i \alpha S_i}{2\pi} e^{-\beta(V_0 - V_i)},\tag{7}$$

где S_i — безразмерная переменная действия в седловой точке, определяемая как

$$S_{i} = \beta \oint_{V(\vartheta,\varphi)=V_{0}} \left[(1 - \cos^{2}\vartheta) \frac{\partial}{\partial\cos\vartheta} V(\vartheta,\varphi) \, d\varphi - (1 - \cos^{2}\vartheta)^{-1} \frac{\partial}{\partial\varphi} V(\vartheta,\varphi) \, d\cos\vartheta \right].$$
(8)

В случае одной седловой точки контурный интеграл в (8) берется по замкнутой критической траектории $\vartheta(\varphi)\big|_{V=V_0}$, проходящей через данную седловую точку и определяемой из решения уравнения $V(\vartheta, \varphi) = V_0$. Если имеется несколько эквивалентных седловых точек, то критическая траектория $\vartheta(\varphi)\big|_{V=V_0}$ проходит между двумя соседники сделовыми точками. Находясь на критической траектории $V(\vartheta, \varphi) = V_0$, вектор намагниченности **М** может перейти в другое метастабильное состояние.

Для промежуточной области $(0.01 < \alpha < 1)$ скорость выхода Γ_{ij} задается выражением [12,17]

$$\Gamma_{ij} = A(\alpha S_i) \,\Gamma_{ij}^{\text{IHD}},\tag{9}$$

где S_i определяется уравнением (8) и

$$A(\alpha S_i) = \exp\left[\frac{1}{\pi} \int_0^\infty \frac{\ln\left[1 - \exp\{-\alpha S_i(\lambda^2 + 1/4)\}\right]}{\lambda^2 + 1/4} \, d\lambda\right].$$
(10)

Для выражения (10) справедливы предельные переходы [13]

$$\lim_{\alpha \to \infty} A(\alpha S_i) = 1, \quad \lim_{\alpha \to 0} A(\alpha S_i) / \alpha = S_i.$$
(11)

С учетом пределов (11) выражение (9) переходит в выражения (6) и (7) соответственно в областях IHD и VLD.

3. Метод матричных непрерывных дробей

Соотношение (9) может быть использовано для оценки наибольшего времени релаксации $\tau \sim \Gamma_{ij}^{-1}$. В свою очередь τ можно использовать для оценки времени корреляции τ_{\parallel} равновесной корреляционной функции C(t)продольной компоненты намагниченности, определяемой как

$$C(t) = \frac{\langle M_Z(0)M_Z(t)\rangle_0}{\langle M_Z^2(0)\rangle_0} = \frac{\langle\cos\vartheta(0)\cos\vartheta(t)\rangle_0}{\langle\cos^2\vartheta(0)\rangle_0}$$
(12)

(угловые скобки обозначают равновесное усреднение по ансамблю). Время корреляции τ_{\parallel} задается выражением [24]

$$\tau_{\parallel} = \int_{0}^{\infty} C(t) \, dt. \tag{13}$$

Другими словами, время корреляции есть площадь под кривой C(t) (отсюда происходит другое название этого времени — интегральное время релаксации). Время τ_{\parallel}

может быть также выражено через собственные значения λ_k оператора Фоккера–Планка $L_{\rm FP}$ из (1), так как C(t) формально представима в виде ряда релаксационных мод

$$C(t) = \sum_{k} c_k e^{-\lambda_k t}.$$
 (14)

Из (13) и (14) имеем

$$\tau_{\parallel} = \sum_{k} c_k / \lambda_k, \tag{15}$$

где $\sum_{k} c_k = 1$. Согласно (15), время корреляции τ_{\parallel} определяется всеми собственными значениями, среди которых наименьшее собственное значение λ_1 характеризует переориентации намагниченности **М** через потенциальные барьеры, тогда как другие собственные значения λ_k $(k \neq 1)$ характеризуют высокочастотные "внутриямные" (intrawell) моды. В общем случае для расчета C(t) и τ_{\parallel} необходимо знать все λ_k и c_k . Однако, в низкотемпературном пределе $\lambda_1 \ll \lambda_k$ и $c_1 \approx 1 \gg c_k$ $(k \neq 1)$ (при условии, что потенциальные ямы, эквивалентны или почти эквивалентны). В этом случае $1/\lambda_1$ хорошо аппроксимирует время корреляции τ_{\parallel} .

Для расчета времени корреляции τ_{\parallel} может быть использован метод непрерывных матричных дробей, развитый в работах [25–27]. Решение уравнения Фоккера-Планка (1) (или уравнения Гильберта (3)) сводится к решению бесконечной системы дифференциальных рекуррентных уравнений для корреляционных функций $c_{l,m}(t) = \langle \cos \vartheta(0) Y_{l,m}[\vartheta(t), \varphi(t)] \rangle_0$ [24]

$$\frac{d}{dt}c_{l,m}(t) = \sum_{l',m'} d_{l',m',l,m} c_{l,m}(t), \qquad (16)$$

где $d_{l',m',l,m}$ — матричные элементы оператора Фоккера– Планка и $Y_{l,m}(\vartheta, \varphi)$ — сферические гармоники (так что $c_{1,0}(t) = C(t)$). Вывод (16) для свободной энергии произвольного типа представлен в [28,29] (см. также [24], глава 7). Уравнения (16) можно преобразовать в матричное рекуррентное уравнение [24–27]

$$\tau_N \frac{d}{dt} \mathbf{C}_n(t) = \mathbf{Q}_n^- \mathbf{C}_{n-1}(t) + \mathbf{Q}_n \mathbf{C}_n(t) + \mathbf{Q}_n^+ \mathbf{C}_{n+1}(t), \quad (n \ge 1),$$
(17)

где $\mathbf{C}_n(t)$ [$\mathbf{C}_0(t) = 0$] — вектор, состоящий из элементов $c_{l,m}(t)$, и \mathbf{Q}_n^- , \mathbf{Q}_n , \mathbf{Q}_n^+ — матрицы, состоящие из элементов $d_{l',m',l,m}$. Точное решение уравнения (17) для преобразования Лапласа вектора $\mathbf{C}_1(t)$ имеет вид [24]

$$\tilde{\mathbf{C}}_1(s) = \tau_N \Delta_1 \bigg\{ \mathbf{C}_1(0) + \sum_{n=2}^{\infty} \bigg[\prod_{k=2}^n \mathbf{Q}_{k-1}^+ \Delta_k \bigg] \mathbf{C}_n(0) \bigg\}, \quad (18)$$

где матричная дробь $\Delta_n(s)$ задается как

$$\Delta_n(s) = \frac{\mathbf{I}}{\tau_N s \mathbf{I} - \mathbf{Q}_n - \mathbf{Q}_n^+ \frac{\mathbf{I}}{\tau_N s \mathbf{I} - \mathbf{Q}_{n+1} - \mathbf{Q}_{n+1}^+ \frac{\mathbf{I}}{\tau_N s \mathbf{I} - \mathbf{Q}_{n+2} - \dots} \mathbf{Q}_{n+2}^- \mathbf{Q}_{n+1}^-}$$

Здесь I — единичная матрица и дробная черта обозначает обращение матрицы. Определив $\tilde{C}_1(s)$, можно найти время корреляции

$$\tau_{\parallel} = C(0) = \tilde{c}_{1,0}(0) / c_{1,0}(0) \tag{19}$$

и спектр корреляционной функции $C(\omega) = \tilde{c}_{1,0}(i\omega)/c_{1,0}(0)$. Кроме того, можно оценить и наименьшее собственное значение λ_1 из уравнения $\det(\lambda_1 \mathbf{I} - \mathbf{S}) = 0$, где матрица **S** определяется как [23]

$$\mathbf{S} = -\tau_{\varepsilon}^{-1} \left[\mathbf{Q}_{1} + \mathbf{Q}_{1}^{+} \Delta_{2}(0) \mathbf{Q}_{2}^{-} \right] \\ \times \left[\mathbf{I} + \sum_{n=2}^{\infty} \prod_{m=1}^{n-1} \mathbf{Q}_{m}^{+} \prod_{k=1}^{n-1} \Delta_{n-k+1}^{2}(0) \mathbf{Q}_{n-k+1}^{-} \right]^{-1}.$$
 (20)

Другими словами, λ_1 является наименьшим собственным значением матрицы **S**. Для случаев кубической анизотропии и одноосной анизотропии в присутствии постоянного поля, метод непрерывных матричных дробей был разработан в [23–27]. В данной работе метод непрерывных матричных дробей используется главным образом для оценки точности асимптотических выражений для времени релаксации намагниченности.

4. Одноосная частица во внешнем поперечном поле

Свободная энергия одноосной частицы в присутствии внешнего постоянного поперечного поля H_0 имеет вид [12]

$$\beta V = \sigma(u_1^2 + u_2^2) - \xi u_1 = \sigma(\sin^2 \vartheta - 2h \sin \vartheta \cos \varphi), \quad (21)$$

где $\sigma = \beta K$ — безразмерный параметр высоты барьера, K — константа анизотропии, $\xi = \beta M_S H_0$ — параметр, характеризующий внешнее постоянное поле и $h = \xi/(2\sigma)$. Потенциал (21) при 0 < h < 1 имеет одну седловую точку с угловыми координатами ($\pi/2$, 0) и два эквивалентных минимума с координатами (arcsin h, 0) и (π – arcsin h, 0). Случай h = 0 соответствует симметрии типа легкая ось.

Для оценки наименьшего собственного значения λ_1 в IHD области ($\alpha \ge 1$) в случае двух и более метастабильных состояний необходимо определить все возможные пути выхода, используя модель дискретных ориентаций [4,15]. Такой анализ показывает, что средняя намагниченность в кристаллах с одноосной анизотропией в присутствии внешнего постоянного поперечного поля затухает с характерным временем $1/(2\Gamma_{ij}^{\text{IHD}})$ [12], где скорость выхода Γ_{ij}^{IHD} задается выражением (6). Учитывая, что

$$\begin{split} \beta(V_0 - V_i) &= \sigma (1 - h)^2, \quad \beta c_1^{(1)} = \beta c_1^{(2)} = 2\sigma, \\ \beta c_2^{(1)} &= \beta c_2^{(2)} = 2\sigma (1 - h^2), \quad \beta c_1^{(0)} = 2\sigma h, \\ \beta c_2^{(0)} &= -2\sigma (1 - h), \end{split}$$

имеем [12,22]

$$\tau_{\rm IHD} \sim \frac{1}{2\Gamma_{12}^{\rm IHD}} = \frac{2\tau_N \pi \sqrt{h} e^{\sigma (1-h)^2}}{\sigma \sqrt{1+h} (1-2h+\sqrt{1+4h(1-h)\alpha^{-2}})}.$$
(22)

Наибольшее время релаксации $\tau = 1/\lambda_1$ в случае двух эквивалентных потенциальных ям *i* и *j* (где $V_i = V_j$ и $S_i = S_j$) определяется как [17]

$$\tau = \frac{A(2\alpha S_i)}{A^2(\alpha S_i)} \tau_{\text{IHD}},$$
(23)

где действие S_i задается (8). Для оценки S_i необходимо найти критическую траекторию $\vartheta(\varphi)|_{V=V_0}$. Эта траектория является решением тригонометрического уравнения

$$\sin^2\vartheta - 2h\sin\vartheta\cos\varphi = 1 - 2h,$$

и для минимума в точке $\vartheta = \arcsin h$ имеет вид

$$\vartheta(\varphi)\big|_{V=V_0} = \arccos\left[\sqrt{2h\left(1 - h\cos^2\varphi - \cos\varphi\sqrt{1 - 2h + h^2\cos^2\varphi}\right)}\right].$$
(24)

Из (8) и (24) имеем

$$S_{i} = \beta \int_{0}^{2\pi} \left\{ \sin^{2} \vartheta_{i}(\varphi) \frac{\partial V}{\partial \cos \vartheta} + \frac{1}{\sin \vartheta_{i}(\varphi)} \frac{\partial V}{\partial \varphi} \right\} d\varphi = 16\sigma \sqrt{h}$$

$$\times \left[1 - \frac{13}{6}h + \frac{11}{8}h^{2} - \frac{3}{16}h^{3} + \frac{7}{384}h^{4} + \frac{h^{5}}{256} + O(h^{6}) \right]. \tag{25}$$

Учитывая (22), (23) и (25), получаем универсальное выражение для времени τ

$$\tau \sim \frac{2\tau_N \pi \sqrt{h} e^{\sigma (1-h)^2} A(2\alpha S_i)}{\sigma \sqrt{1+h} (1-2h+\sqrt{1+4h(1-h)\alpha^{-2}}) A^2(\alpha S_i)},$$
(26)

где зависимость диффузионного времени τ_N от коэффициента затухания α задается (2). В области слабого затухания, $\alpha < 0.001$, (26) совпадает с VLD асимптотой

$$\tau_{\rm VLD} \sim \frac{1}{2\Gamma_{12}^{\rm VLD}} = \frac{\pi\tau_N e^{\sigma(1-h)^2}}{8\sigma^2\sqrt{h(1-h)^2}} \left[1 - \frac{13}{6}h + \frac{11}{8}h^2 - \frac{3}{16}h^3 + \frac{7}{384}h^4 + \frac{h^5}{256} + O(h^6)\right]^{-1}.$$
 (27)

Время релаксации τ , определяемое универсальным соотношением (26), и обратная величина наименьшего собственного значения $1/\lambda_1$, рассчитанная методом матричных непрерывных дробей, показаны на рис. 1–4. Как видно из этих рисунков, выражение (26) дает хорошее согласие с результатами численных расчетов во всем диапазоне изменения α , причем удовлетворительное согласие наблюдается при значения параметра анизотропии $\sigma \gtrsim 4$. Следует подчеркнуть, что выражение (26) непригодно для расчета τ при малых полях, $4\sigma h \lesssim 1$. В этом случае, детально исследованном в [12,22], зависимость плотности свободной энергии V от азимутального угла φ слабая (потенциал (21) становится

Рис. 1. Зависимость τ/τ_N от α при h = 0.1 и различных значениях σ . Сплошные линии — точное решение методом матричных непрерывных дробей [26]; штриховые линии — выражение (27); пунктирные линии — выражение (22); кружки — универсальное выражение (26).

Рис. 2. Зависимость τ/τ_N от α при $\sigma = 10$ и различных значениях *h*. Обозначения те же, что и на рис. 1. Штрих-пунктирная линия — τ/τ_N для одноосного кристалла (выражение (29)).

почти аксиально-симметричным) и все пути выхода из потенциальных ям становятся примерно эквивалентными. Здесь для оценки τ можно использовать следующее соотношение, полученное в [22] с помощью теории возмущений:

$$\tau \simeq \tau_N \left\{ 1 + h^2 \sigma^2 \left[1 + 2(2\sigma \alpha^2 e)^{1/(2\sigma \alpha^2)} \right] \times \gamma \left(1 + \frac{1}{2\sigma \alpha^2}, \frac{1}{2\sigma \alpha^2} \right) \right\}^{-1}, \quad (28)$$

где

$$\tau_B \sim \tau_N \sqrt{\pi} \, \sigma^{-3/2} \, e^{\sigma}/2 \tag{29}$$

— время релаксации для одноосного (аксиально-симметричного) потенциала [3,4] (для сравнения, асимптота (29) приведена на рис. 2 и 3) и $\gamma(a, z) = \int_{0}^{z} t^{a-1}e^{-t}dt$ — неполная гамма-функция. Можно по-

Рис. 3. Зависимость τ/τ_N от σ при $\alpha = 0.01$ при различных значениях *h*. Сплошные линии — точное решение методом матричных непрерывных дробей [26]; символы — универсальное выражение (26), штрих-пунктирная линия — τ/τ_N для одноосного кристалла (выражение (29)).

Рис. 4. Зависимость τ/τ_N от σ при h = 0.2 и различных значениях α . Сплошные линии — точное решение методом матричных непрерывных дробей [26]; символы — универсальное выражение (26); пунктирная линия — выражение (22) при $\alpha = 1$; штриховая линия — выражение (27) для слабого затухания.

казать [22], что выражение в квадратных скобках соотношения (28) ≈ 1 и $\approx \alpha^{-1} \sqrt{\pi/\sigma}$ при $\alpha \gg 1$ и $\alpha \ll 1$ соответственно. Область применимости соотношения (28) определяется неравенствами $h^2 \sigma^2 \ll 1$, $\alpha > 4h^2 \sigma^{3/2}$ и $\sigma \gtrsim 4$.

5. Кубическая анизотропия

Свободная энергия кристаллов с кубической анизотропией имеет вид [4,15]

$$\beta V = 4\sigma \left(u_1^2 u_2^2 + u_2^2 u_3^2 + u_3^2 u_1^2 \right) = \sigma \left(\sin^4 \vartheta \sin^2 2\varphi + \sin^2 2\vartheta \right), \tag{30}$$

где $\sigma K/4$ — безразмерный параметр, характеризующий высоту потенциального барьера, K — константа

анизотропии, которая может быть как положительной, так и отрицательной. Для K > 0 (кристаллы Fe типа), свободная энергия (30) имеет шесть минимумов (потенциальных ям), восемь максимумов и двенадцать седловых точек. Для K < 0 (кристаллы Ni типа) минимумы становятся максимумами и наоборот. В соответствии с моделью дискретных ориентаций средняя намагниченность в кристаллах с кубической анизотропией затухает с характерными временами $1/(4\Gamma_{ij}^{\text{IHD}})$ и $1/(2\Gamma_{ij}^{\text{IHD}})$ для K > 0 и K < 0 соответственно [4]. Скорость выхода Γ_{ij}^{IHD} задается (6), где

$$eta(V_0-V_i)=\sigma, \quad eta c_1^{(i)}=eta c_2^{(i)}=8\sigma,$$
 $c_1^{(0)}=4\sigma, \quad c_2^{(0)}=-8\sigma, \quad eta=0$ для $K>$

И

$$\beta(V_0 - V_i) = -\sigma/3, \quad \beta c_1^{(i)} = \beta c_2^{(i)} = 16|\sigma|/3,$$
$$\beta c_2^{(0)} = 8|\sigma|, \quad \beta c_2^{(0)} = -4|\sigma|, \quad \text{ing} \quad K < 0.$$

Таким образом, имеем [4,15]

$$\tau_{\text{IHD}} \sim \frac{1}{4\Gamma_{ij}^{\text{IHD}}} = \frac{\tau_N \pi e^{\sigma}}{2\sqrt{2}\,\sigma\left(\sqrt{9+8/\alpha^2}+1\right)}, \quad (K > 0)$$
(31)

И

$$\tau_{\rm IHD} \sim \frac{1}{2\Gamma_{ij}^{\rm IHD}} = \frac{3\tau_N \pi e^{-|\sigma|/3}}{2\sqrt{2} |\sigma| (\sqrt{9+8/\alpha^2}-1)}. \quad (K < 0)$$
(32)

Универсальное выражение для τ записывается в виде

$$\tau \sim \frac{\tau_{\text{IHD}}}{A(\alpha S_i)}.$$
 (33)

Для оценки S_i из (8) необходимо определить критическую траекторию $\vartheta(\varphi)|_{V=V_0}$. Для минимума в точке $\vartheta = 0$ (K > 0) и для минимума в точке ($\arccos(1/\sqrt{3}), \pi/4$) (K < 0) искомая траектория проходит через две соседние седловые точки с координатами ($\arccos(1/\sqrt{2}), 0$) и ($\arccos(1/\sqrt{2}), \pi/2$) и находится из тригонометрического уравнения

$$\sin^4\vartheta\sin^22\varphi+\sin^22\vartheta=1.$$

Соответствующее решение этого уравнения имеет вид

$$\vartheta(\varphi)\big|_{V=V_0} = \arccos \sqrt{\frac{1+\sin 2\varphi}{2+\sin 2\varphi}}.$$
 (34)

Таким образом, из (8) и (34) имеем

$$S_i = 12|\sigma| \int_{0}^{\pi/2} \frac{\sin 2\varphi \sqrt{1 + \sin 2\varphi}}{(2 + \sin 2\varphi)^{5/2}} \, d\varphi = 8\sqrt{2} \, |\sigma|/9.$$
(35)

0

Учитывая (33), (34) и (35), получаем

$$\tau \sim \frac{\tau_N \pi e^{\sigma}}{2\sqrt{2}\sigma \left(\sqrt{9+8/\alpha^2}+1\right) A \left(8\sqrt{2}\sigma \alpha/9\right)}, \quad (K>0)$$
(36)

И

$$\tau \sim \frac{3\tau_N \pi e^{|\sigma|/3}}{2\sqrt{2}|\sigma|(\sqrt{9+8/\alpha^2}-1)A(\alpha|\sigma|8\sqrt{2}/9)}, \quad (K<0).$$
(37)

При $\alpha \ll 1$ выражения (36) и (37) совпадают с соответствующими VLD асимптотами

$$\tau_{\rm VLD} \sim \frac{1}{4\Gamma_i^{\rm VLD}} = \frac{\pi e^{\sigma}}{2\alpha\omega_i S_i} = \frac{9\pi e^{\sigma}}{64\sqrt{2}\sigma^2} \tau_N, \quad (K > 0) \quad (38)$$

$$\tau_{\rm VLD} \sim \frac{1}{2\Gamma_i^{\rm VLD}} = \frac{\pi e^{|\sigma|/3}}{\omega_i \alpha S_i} \approx \frac{27\pi e^{|\sigma|/3}}{64\sqrt{2}\sigma^2} \tau_N, \quad (K < 0).$$
(39)

Время корреляции τ_{\parallel} , рассчитанное методом матричных непрерывных дробей [26,27], и время релак-

Рис. 5. Зависимость τ/τ_N от α при различных значениях σ (K > 0). Сплошные линии — точное решение методом матричных непрерывных дробей для времени корреляции τ_{\parallel} ; штриховые линии — выражение (38); пунктирные линии — выражение (31); кружки — универсальное выражение (36).

Рис. 6. Зависимость τ/τ_N от α при различных значениях σ (K < 0).

Рис. 7. Зависимость τ/τ_N от σ при различных значениях α в промежуточной области для (K > 0). Сплошные линии — точное решение методом матричных непрепрывных дробей для времени корреляции τ_{\parallel} ; кружки — универсальное выражение (36).

Рис. 8. Зависимость τ/τ_N от σ при различных значениях α (K < 0).

сации τ , определяемое универсальными соотношениями (36) и (37), показаны на рис. 5–8 как функция α и σ . Для сравнения на этих рисунках приведены асимптоты для областей IHD и VLD из (31), (32) и (38), (39). Как видно, универсальные выражения (36) и (37) дают хорошее согласие с численными расчетами во всем диапазоне изменения параметра α , включая IHD, VLD и промежуточную области; причем удовлетворительное согласие наблюдается, начиная с умеренных значений потенциального барьера ($\sigma \gtrsim 3$ при K > 0 и $|\sigma| \gtrsim 10$ при K < 0).

6. Заключение

Таким образом, метод [13] расчета скорости выхода механической броуновской частицы из потенциальной ямы, обобщенный на случай суперпарамагнитных частиц [12,17], позволяет получать простые асимптотиче-

ские формулы для времени релаксации намагниченности т. Расчеты по этим формулам находятся в полном согласии с результатами численного решения уравнения Ландау–Лифшица–Гильберта методом непрерывных матричных дробей во всем диапазоне изменеия параметра диссипации (слабое затухание, умеренное и сильное затухание, промежуточная область между слабым и умеренным затуханием). Полученные таким образом выражения для времени релаксации намагниченности т в случаях кубической анизотропии и одноосной анизотропии в присутствии постоянного поперечного поля (соотношения (26), (36) и (37)) позволяют легко оценить τ с хорошей точностью при всех значениях α . Хорошую точность асимптотических формул можно объяснить следующим образом. Зависимость времени релаксации τ от высоты потенциального барьера ΔU при больших ΔU хорошо аппроксимируется экспоненциальной зависимостью $\tau \sim \tau_0 e^{\beta \Delta U}$, что является следствием равновесных свойств системы, а именно больцмановского распределения на дне потенциальной ямы. С другой стороны, зависимость времени релаксации т от параметра затухания а обусловлена неравновесными (динамическими) свойствами системы и содержится в предэкспоненциальном множителе τ_0 , вид которого существенно зависит от упрощений, которые допускаются в оценочных выражениях. Таким образом, постулировать больцмановское распределение на дне потенциальной ямы недостаточно. Необходимо также задать функцию распределения в седловых точках свободной энергии. Как заметил Крамерс [10], точность выражений скорости выхода не столь существенна с экспериментальной точки зрения, поскольку методики экспериментов обычно направлены на определение множителя τ_0 и позволяют это делать с той или иной степенью точности. Однако, определение зависимости времени релаксации от пара-

определение зависимости времени релаксации от параметра затухания α с помощью аналитических методов является очень важным моментом, так как позволяет судить о механизмах релаксационных процессов в магнитных системах.

Список литературы

- [1] L. Néel. Ann. Géophys. 5, 1, 99 (1949).
- [2] C.P. Pean, J.D. Livingston. J. Appl. Phys. Suppl. **30**, *1*, 1208 (1959).
- [3] W.F. Brown, Jr. Phys. Rev. 130, 5, 1677 (1963).
- [4] W.F. Brown, Jr. IEEE Trans. Mag. 15, 5, 1196 (1979).
- [5] L.D. Landau, E.M. Lifshitz. Phys. Z. Sowjetunion 8, 1, 153 (1935).
- [6] T.L. Gilbert. Phys. Rev. 100, 5, 1243 (1956).
- [7] Yu.L. Raikher, M.I. Shliomis. Adv. Chem. Phys. 87, 595 (1994).
- [8] W.T. Coffey, P.J. Cregg, Yu.P. Kalmykov. Adv. Chem. Phys. 83, 263 (1993).
- [9] I. Klik, L. Gunther, J. Stat. Phys. 60, 3–4, 473 (1990); J. Appl. Phys. 67, 9, 4505 (1990).
- [10] H.A. Kramers. Physica (Utrecht) 7, 4, 284 (1940).
- [11] P. Hänggi, P. Talkner, M. Borkovec. Rev. Mod. Phys. 62, 2, 251 (1990).

- [12] W.T. Coffey, D.A. Garanin, D. McCarthy. Adv. Chem. Phys. 117, 528 (2001).
- [13] V.I. Mel'nikov, S.V. Meshkov. J. Chem. Phys. 85, 2, 1018 (1986).
- [14] V.I. Mel'nikov. Phys. Rep. 209, 1–2, 1 (1991).
- [15] D.A. Smith, F.A. de Rozario. J. Magn. Magn. Mater. 3, 3, 219 (1976).
- [16] J.S. Langer. Ann. Phys. (N.Y.) 54, 2, 258 (1969).
- [17] P.M. Déjardin, D.S.F. Crothers, W.T. Coffey, D.J. McCarthy. Phys. Rev. E 63, 2, 021 102 (2001).
- [18] I. Eisenstein, A. Aharoni. Phys. Rev. B 16, 3, 1278 (1977).
- [19] I. Eisenstein, A. Aharoni. Phys. Rev. B 16, 3, 1285 (1977).
- [20] W. Wernsdorfer. Adv. Chem. Phys. 118, 99 (2001).
- [21] W.T. Coffey, D.S.F. Crothers, J.L. Dormann, Yu.P. Kalmykov, E.C. Kennedy, W. Wernsdorfer. Phys. Rev. Lett. 80, 25, 5655 (1998).
- [22] D.A. Garanin, E.C. Kennedy, D.S.F. Crothers, W.T. Coffey. Phys. Rev. E 60, 6, 6499 (1999).
- [23] Yu.P. Kalmykov. Phys. Rev. E 62, 1, 227 (2000).
- [24] W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron. The Langevin Equation. 2nd ed. World Scientific, Singapore (2004).
- [25] Ю.П. Калмыков, С.В. Титов. ФТТ 40, 9, 1642 (1998).
- [26] Ю.П. Калмыков, С.В. Титов. ЖЭТФ 115, 1, 101 (1999).
- [27] Yu.P. Kalmykov, S.V. Titov, W.T. Coffey. Phys. Rev. B 58, 6, 3267 (1998).
- [28] Yu.P. Kalmykov, S.V. Titov. Phys. Rev. Lett. 82, 14, 2967 (1999).
- [29] Yu.P. Kalmykov, S.V. Titov. J. Magn. Magn. Mater. 210, 1–2, 233 (2000).