Квантово-размерный эффект Штарка в квазинульмерных полупроводниковых структурах

© С.И. Покутний¶

Ильичевский учебно-научный центр Одесского государственного университета им. И.И. Мечникова, 68001 Ильичевск, Украина

(Получена 24 ноября 1999 г. Принята к печати 23 марта 2000 г.)

Развита теория квантово-размерного эффекта Штарка в полупроводниковых нанокристаллах в условиях, когда поляризационное взаимодействие электрона и дырки с поверхностью нанокристалла играет доминирующую роль. Установлено, что сдвиги уровней размерного квантования электрона и дырки в нанокристалле во внешнем однородном электрическом поле в области межзонного поглощения определяются квадратичным эффектом Штарка. Предложен новый электрооптический метод, дающий возможность определить величины критических радиусов нанокристаллов, в которых могут возникнуть объемные экситоны.

1. Введение

В настоящее время интенсивно исследуются оптические [1-4] и электрооптические [5-7] свойства квазинульмерных структур (квантовых точек), состоящих из полупроводниковых нанокристаллов (ПН) сферической формы с радиусами $a \simeq 1-10^2$ нм, выращенных в прозрачных диэлектрических матрицах. Такие исследования вызваны тем, что подобные гетерофазные системы являются новыми перспективными материалами для создания новых элементов нелинейной оптоэлектроники (в частности, элементов для управления оптическими сигналами в оптических компьютерах и лазерах на квантовых точках).

Поскольку энергетическая щель полупроводника существенно меньше, чем в диэлектрических матрицах, движение носителей заряда в ПН будет ограничено его объемом. Оптические и электрооптические свойства подобных гетерофазных структур определяются энергетическим спектром пространственно ограниченной электронно-дырочной пары (экситона) [1–7]. Методами оптической спектроскопии в таких квазинульмерных структурах были обнаружены эффекты размерного квантования энергетического спектра электронов [1,2] и экситонов [3,4].

Интерес к исследованию электрооптических эффектов в квазинульмерных полупроводниковых системах определяется тем, что в них штарковский сдвиг уровней энергии пространственно ограниченных электроннодырочных пар (экситонов) не сопровождается резким падением силы осциллятора соответствующих переходов в ПН [5], которая имеет большие значения, превосходящие типичные значения силы осциллятора переходов для полупроводников [8,9]. В результате экситонные состояния в электрических полях, существенно бо́льших, чем поле ионизации в объемном полупроводнике, не разрушаются при сдвигах, превышающих величину энергии связи экситона [6,7].

В работах [5,10] исследовано влияние электрического поля напряженностью до 10⁷ В/м на спектры поглощения

стекол, активированных нанокристаллами CdS и CdSSe, в области края межзонного поглощения. Обнаруженная в [5,10] зависимость величины штарковского сдвига уровней энергии электрона и дырки от размера ПН была обусловлена особенностями энергетического спектра пространственно ограниченной электронно-дырочной пары (экситона) во внешнем однородном электрическом поле (ВОЭП). В [5,10] не изучался вопрос о возникновении объемных экситонов в ПН, помещенных во ВОЭП. Под объемным экситоном в ПН будем понимать экситон, структура которого (приведенная эффективная масса, боровский радиус, энергия связи) в ПН не отличается от таковой структуры экситона в неограниченном полупроводниковом материале.

В настоящей работе развита теория квантоворазмерного эффекта Штарка в ПН в условиях, когда поляризационное взаимодействие электрона и дырки с поверхностью ПН играет доминирующую роль. Установлено, что сдвиги энергетических уровней размерного квантования электронно-дырочной пары в ПН в ВОЭП в области межзонного поглощения определяются квадратичным эффектом Штарка. Предложен новый электрооптический метод, дающий возможность определить величины критических радиусов ПН, в которых могут возникнуть объемные экситоны.

2. Штарковский сдвиг энергетических уровней электронно-дырочной пары в полупроводниковом нанокристалле во внешнем однородном электрическом поле

В работах [11–13] изучалась простая модель квазинульмерной структуры — нейтральный сферический ПН радиуса *a* с диэлектрической проницаемостью (ДП) ε_2 , окруженный средой с ДП ε_1 . В объеме такого ПН двигаются электрон *e* и дырка *h* с эффективными массами m_e и m_h соответственно, r_e и r_h — расстояние электрона и дырки от центра ПН, причем ДП нанокристалла и диэлектрической среды имели сильное

[¶] E-mail: wladik@tecom.odessa.ua

отличие (т. е. $\varepsilon_1 \ll \varepsilon_2$). Предполагалось также, что зоны электронов и дырок имели параболическую форму.

Характерными размерами задачи являются величины: a, a_e, a_h, a_{ex} , где $a_e = \varepsilon_2 \hbar^2 / m_e e^2$, $a_h = \varepsilon_2 \hbar^2 / m_h e^2$, $a_{ex} = \varepsilon_2 \hbar^2 / \mu e^2$ — боровские радиусы электрона, дырки и экситона в полупроводнике с ДП ε_2 , $\mu = m_e m_h / (m_e + m_h)$ — приведенная эффективная масса экситона, e — заряд электрона. То обстоятельство, что все характерные размеры задачи значительно больше межатомных a_0 ($a, a_e, a_h, a_{ex} \gg a_0$), позволяет рассматривать движение электрона и дырки в приближении эффективной массы.

В изучаемой модели в рамках вышеизложенных приближений гамильтониан электронно-дырочной пары в ПН, помещенном во ВОЭП напряженностью *F*, принимает вид

$$H = -(\hbar^{2}/2m_{e})\Delta_{e} - (\hbar^{2}/2m_{h})\Delta_{h} + E_{g} + V_{hh'}(r_{h}, a)$$
$$+ V_{eh}(r_{e}, r_{h}) + V_{ee'}(r_{e}, a) + V_{eh'}(r_{e}, r_{h}, a)$$
$$+ V_{he'}(r_{e}, r_{h}, a) + eFr_{e} - eFr_{h},$$
(1)

где первые два члена определяют кинетическую энергию электрона и дырки, $V_{eh}(r_e, r_h)$ — энергия кулоновского взаимодействия электрона с дыркой

$$V_{eh}(r_e, r_h) = -\frac{e^2}{2\varepsilon_2 a} \frac{2a}{(r_2^2 - 2r_e r_h \cos\theta + r_h^2)^{1/2}},$$

$$\theta = \widehat{r_e r_h}, \qquad (2)$$

 $V_{ee'}(r_e, a)$ и $V_{hh'}(r_h, a)$ — энергия взаимодействия с собственными изображениями для электрона и дырки. $V_{eh'}(r_e, r_h, a)$ и $V_{he'}(r_e, r_h, a)$ — их энергии взаимодействия с "чужими" изображениями. Последние два члена в (1) описывают энергию взаимодействия электрона и дырки с ВОЭП напряженностью $F; E_g$ — ширина запрещенной зоны в неограниченном полупроводнике с ДП ε_2 .

При произвольных значениях ε_1 и ε_2 члены $V_{hh'}(r_h, a)$, $V_{ee'}(r_e, a)$, $V_{eh'}(r_e, r_h, a)$, $V_{he'}(r_e, r_h, a)$ в соотношении (1), описывающие энергию поляризационного взаимодействия электрона и дырки с поверхностью ПН, могут быть представлены в аналитическом виде [14], который в случае $\varepsilon_1 \ll \varepsilon_2$ приобретает особенно простой вид [11–13]:

$$V_{hh'}(r_h, a) = \frac{e^2}{2\varepsilon_2 a} \left(\frac{a^2}{a^2 - r_h^2} + \frac{\varepsilon_2}{\varepsilon_1} \right), \qquad (3)$$

$$v_{ee'}(r_e, a) = \frac{e^2}{2\varepsilon_2 a} \left(\frac{a^2}{a^2 - r_e^2} + \frac{\varepsilon_2}{\varepsilon_1} \right), \tag{4}$$

$$V_{eh'} = V_{he'} = -\frac{e^2}{2\varepsilon_2 a} \frac{a}{[(r_e r_h/a)^2 - 2r_e r_h \cos\theta + a^2]^{1/2}}.$$
 (5)

Исследуем влияние ВОЭП (F) на спектр электроннодырочной пары в ПН в случае, когда размер ПН ограничен условием

$$a_0 \ll a_h \ll a \le a_e \le a_{\rm ex},\tag{6}$$

при выполнении которого в потенициальной энергии гамильтониана (1) поляризационное взаимодействие играет доминирующую роль. Справедливость условия (6)

7 Физика и техника полупроводников, 2000, том 34, вып. 9

(т.е. $m_e \ll m_h$) дает возможность рассматривать движение тяжелой дырки в электронном потенциале, усредненном по движению электрона (адиабатическое приближение).

Сначала приведем спектр электронно-дырочной пары, полученный в [11–13] в рамках адиабатического приближения и 1-го порядка теории возмущений на функциях сферической потенциальной ямы бесконечной глубины ПН (с использованием гамильтониана (1), без двух последних членов) в нанокристалле, радиус которого удовлетворяет условию (6), в состоянии n_e , $l_e = 0$, t_h :

$$E_{n_{e},0}^{t_{h}}(S) = E_{g} + \frac{\pi^{2}n_{e}^{2}}{S^{2}} + \frac{1}{S} \left[Z_{n_{e},0} + \frac{\varepsilon_{2}}{\varepsilon_{1}} \right] + \lambda_{n_{e},0}^{t_{h}}(S), \quad (7)$$

где n_e , t_h — главное квантовое число электрона и дырки, l_e — орбитальное квантовое число электрона. В спектре электронно-дырочной пары (7) последний член представляет собой спектр тяжелой дырки

$$\lambda_{n_e,0}^{t_h}(S) = \frac{P_{n_e,0}}{S} + \omega(S, n_e)(t_h + 3/2),$$
(8)

которая совершает осцилляторные колебания с частотой [12]

$$\omega(S, n_e) = 2 \left[1 + (2/3)\pi^2 n_e^2 \right]^{1/2} S^{-3/2}$$
(9)

в адиабатическом потенциале электрона в ПН. При этом параметры $Z_{n_e,0}$ и $P_{n_e,0}$ принимают такие значения:

$$Z_{n_e,0} = 2 \int_0^1 \frac{dx \sin^2(\pi n_e x)}{1 - x^2},$$
$$P_{n_e,0} = 2\text{Ci}(2\pi n_e) - 2\ln(2\pi n_e) - 2\gamma + (\varepsilon_2/\varepsilon_1) - 1,$$

где Ci(y) — интегральный косинус, $\gamma = 0.577$ — постоянная Эйлера. Здесь и далее энергия измеряется в единицах $\text{Ry}_h = \hbar^2/2m_h a_h^2$ и используются безразмерные величины длины $x = r_h/a$ и $S = a/a_h$.

Следует отметить, что спектр электронно-дырочной пары в ПН, который описывается формулами (7)–(9), получен в работах [11–13] для ПН с размерами *S*, удовлетворяющими условию (6) и неравенству

$$S^{1/2} \gg (t_h + 3/2)[1 + (2/3)\pi^2 n_e^2]^{-1/2}.$$
 (10)

При этом спектр электронно-дырочной пары в ПН, описываемый (7)–(9), применим только для самых нижних состояний электронно-дырочной пары $(n_e, l_e = 0; t_h)$, для которых выполняется неравенство

$$E_{n_e,0}^{t_h}(S) - E_g \ll \Delta V_0(S),$$
 (11)

где $\Delta V_0(S)$ — глубина потенциальной ямы для электронов в ПН; например, в ПН CdS в области размеров (6) $\Delta V_0 = (2.3-25)$ эВ [15].

Для простоты будем считать, что вектор напряженности ВОЭП F направлен вдоль оси 0Z координатной

системы электрона. После усреднения потенциальной энергии в гамильтониане (1) на электронных волновых функциях бесконечной глубокой сферической потенциальной ямы ПН [12] получим выражение для потенциальной энергии тяжелой дырки, движущейся в ПН в адиабатическом потенциале электрона в состоянии n_e , $l_e = 0$:

$$U_{n_{e},0} = \frac{1}{S} \left[\frac{1}{1-x^{2}} + 2\operatorname{Ci}(2\pi n_{e}) - 2\operatorname{Ci}(2\pi n_{e}x) + \frac{\sin(2\pi n_{e}x)}{\pi n_{e}x} + 2\ln x + \frac{\varepsilon_{2}}{\varepsilon_{1}} - 4 \right] - \frac{eFa}{\operatorname{Ry}} x. \quad (12)$$

Последний член в (12) приводит к смещению положения дна потенциальной ямы дырки в ПН (по сравнению с положением минимума потенциальной энергии дырки в точке x = 0 [12] в отсутствие ВОЭП) на величину

$$\Delta x = \frac{(\varepsilon_2/e)}{1 + (2/3)\pi^2 n_e^2} F a^2,$$
 (13)

а также соответственно к сдвигу всех уровней размерного квантования дырки $\lambda_{n_e,0}^{t_h}(S)$ (8) на величину

$$\Delta \lambda_{n_e,0}^{t_h}(a,F) = -\frac{\varepsilon_2}{2[1+(2/3)\pi^2 n_e^2]} F^2 a^3.$$
(14)

При этом сдвиг уровней энергии дырки $\Delta \lambda_{n_e,0}^{t_h}(a, F)$ (14) не зависит от главного квантового числа дырки t_h , а определяется только главным квантовым числом электрона n_e .

Таким образом, формула (14) описывает квантоворазмерный квадратичный эффект Штарка, согласно которому уровни размерного квантования дырки $\lambda_{n_{e,0}}^{t_h}(S)$ (8) под действием электрического поля напряженностью *F* сдвигаются на величину $\Delta \lambda_{n_{e,0}}^{t_h}(a, F) \simeq a^3 F^2$ (14).

Полученные формулы (13) и (14) имеют место, если кроме неравенств (6), (10) и (11) выполняются одновременно такие условия:

$$E_{n_{e},0}^{t_{h}}(S) + \Delta \lambda_{n_{e},0}^{t_{h}}(S,F) - E_{g} \ll \Delta V_{0}(S),$$
 (11a)

$$\frac{\left|\Delta\lambda_{n_e,0}^{t_h}(S,F)\right|}{E_e} \ll 1,$$
(15)

$$\left(\frac{\Delta r_h}{a}\right)^2 = (\Delta x)^2 \ll 1,$$
(16)

где $E_e = \pi^2 n_e^2 / S^2$ — кинетическая энергия электрона в ПН. Выполнение неравенства (15) дает возможность рассматривать влияние ВОЭП напряженностью *F* на спектр электронно-дырочной пары (7) в ПН в адиабатическом приближении. Условие (16) определяет малость смещения Δr_h (13) положения дна потенциальной ямы дырки в ПН под действием ВОЭП по сравнению с радиусом нанокристалла *a*. Легко показать, что условие одновременного выполнения неравенств (15) и (16) с учетом (13) и (14) сводится к выполнению условия

$$(F/e)^2 \ll \frac{[1+(2/3)\pi^2 n_e^2]^2}{S^4} \frac{1}{\varepsilon_2^2 a_h^4},\tag{17}$$

которое определяет допустимые значения напряженности электрического поля F. Будем также считать, что кроме выполнения неравенства (11 а), которое позволяет изучать влияние ВОЭП только на самые нижние состояния электронно-дырочной пары $(n_e, 0; t_h)$ в ПН, уширение уровней дырки (8), вызванное действием ВОЭП напряженностью F (17), будет достаточно малым по сравнению с расстоянием $\omega(S, n_e)$ (9) между эквидистантными уровнями дырки.

Возникновение объемного экситона в полупроводниковом нанокристалле, помещенном во внешнее однородное электрическое поле

В работах [16–18] теоретически было показано, что с ростом радиуса нанокристалла a, так что $a \ge a_c$, в нанокристалле CdS, помещенном в матрицу борносиликатного стекла (в условиях экспериментов [1,2]), возникал объемный экситон. Причем образование такого объемного экситона носит пороговый характер и возможно лишь только в ПН, размер которого a превышает значение некоторого критического радиуса ПН a_c .

В [16] и [17] были получены соответственно значения критических радиусов нанокристаллов CdS $a_c^{(1)} = 2.8a_{ex}$ (в рамках адиабатического приближения в бесконечной глубокой сферической потенциальной яме ПН) и $a_c^{(2)} = 1.7 a_{\rm ex}$ (в рамках адиабатического приближения с учетом конечной глубины сферической потенциальной ямы ПН). В работе [18], не ограничиваясь рамками адиабатического приближения в бесконечной глубокой сферической потенциальной яме ПН, вариационным методом было найдено значение критического радиуса нанокристалла CdS $a_c^{(3)} = 3.48a_{\text{ex}}$. При этом значения критических радиусов нанокристаллов CdS $a_c^{(1)} = 2.8a_{\text{ex}}$ и $a_c^{(3)} = 3.48 a_{\text{ex}}$ находились в хорошем согласии друг с другом, отличаясь лишь в пределах \cong 20%. Что же касается значения критического радиуса нанокристалла CdS $a_c^{(2)} = 1.7a_{ex}$, то, как и следовало ожидать, оно будет несколько меньшим, чем значения $a_c^{(1)} = 2.8a_{\rm ex}$ и $a_c^{(3)} = 3.48a_{\rm ex}$.

Приведенные здесь значения критических радиусов нанокристаллов CdS $a_c^{(1)}$, $a_c^{(2)}$ и $a_c^{(3)}$ были получены с помощью предложенного нами нового оптического метода [16–18], основанного на сравнении теоретической зависимости спектра экситона (электронно-дырочной пары) $E_{n_e,0}^{t_h}(a)$ (7) от параметров задачи с экспериментальными спектрами экситонного поглощения ПН.

Физика и техника полупроводников, 2000, том 34, вып. 9

Действие небольшого ВОЭП напряженностью F (17) на ПН с размером $a \ge a_c$, в котором возникает объемный экситон, приводит к сдвигу уровней размерного квантования экситона, совпадающего со штарковским сдвигом энергии основного состояния экситона в полупроводнике с ДП ε_2

$$\Delta V = -(9/4)\varepsilon_2 a_{\rm ex}^3 F^2. \tag{18}$$

С ростом радиуса ПН *а* при некотором критическом значении радиуса $a = \bar{a}_c$ сдвиг уровней энергии дырок (14) будет совпадать со сдвигом энергии основного состояния экситона ΔV (18). Отсюда определим значение критического радиуса \bar{a}_c ПН, начиная с которого в ПН размером $a \ge \bar{a}_c$, помещенного во ВОЭП напряженностью *F* (17), может возникнуть объемный экситон,

$$(\bar{a}_c/a_{\rm ex}) = \left[(9/2)(1 + (2/3)\pi^2 n_e^2) \right]^{1/3},$$
 (19)

Из формулы (19) найдем значение критического радиуса $\bar{a}_c \Pi H$, в котором при $a \ge \bar{a}_c$ может возникнуть объемный экситон в основном состоянии

$$\bar{a}_c(n_e = 1, l_e = 0; t_h = 0) = 3.24a_{\text{ex}}.$$
 (20)

Сравнение значения $\bar{a}_c(1,0;0)$ (20) с величиной критического радиуса $a_c^{(2)}(1,0;0) = 3.48a_{\rm ex}$, полученного нами в работе [18] с помощью нового оптического метода, дает хорошее согласие между ними (эти значения отличаются между собой в пределах 6.9%). Такое отличие, по-видимому, обусловлено тем обстоятельством, что вариационный метод расчета спектра экситона в ПН, использованный нами в [18], может давать завышенные значения энергии, что в свою очередь приводит также к завышенному значению критического радиуса ПН $a_c^{(2)}$.

При определении величины \bar{a}_c (20) нарушается строгость одного из условий (неравенства (6)) применимости построенной здесь теории, тем не менее будем считать, что формулы (13), (14), (19) и (20) могут быть использованы и для ПН с радиусами $a \ge a_{\rm ex}$. Основанием для этого является хорошее согласие спектра экситона в ПН с размером $a \ge a_{\rm ex}$, полученного в работе [18] вариационным методом, со спектром электронно-дырочной пары, рассчитанного в работе [16] в рамках адиабатического приближения при выполнении условия (6) на радиусы a ПН, и, как следствие, близость величин критических радиусов ПН $\bar{a}_c = 3.24a_{\rm ex}$ (20) и $a_c^{(2)} = 3.48a_{\rm ex}$ [18].

Таким образом, можно предложить новый электрооптический метод определения критических радиусов \bar{a}_c ПН с помощью формулы (19), основанный на равенстве штарковского сдвига уровней размерного квантования дырки $\Delta \lambda_{n_e,0}^{t_h}(a, F)$ (14) со штарковским сдвигом энергии основного состояния экситона ΔV (18). При этом новый электрооптический метод дает величину радиуса нанокристалла \bar{a}_c (20), отличающуюся лишь в пределах 6.9% от аналогичной величины критического радиуса ПН $a_c^{(2)} = 3.48a_{ex}$, полученной в [18] с помощью нового оптического метода.

Рис. 1. Сдвиг уровней размерного квантования дырки $\Delta \lambda_{1,0}^{\iota_h}(a, F)$ (14) под действием внешнего однородного электрического поля напряженностью *F* как функция радиуса *a* нанокристалла CdS (верхняя шкала) или как функция параметра $(a/a_{\rm ex})^3$ (нижняя шкала), $a_{\rm ex}$ — боровский радиус экситона в CdS. Линии *I* и *2* отвечают значениям напряженности электрического поля *F*, В/м: *I* — 10³, *2* — 1.23 · 10³.

Рис. 2. Сдвиг уровней размерного квантования дырки $\Delta \lambda_{1,0}^{t_h}(a, F)$ (14) под действием внешнего однородного электрического поля наряженностью *F* как функция радиуса *a* нанокристалла CdSe (верхняя шкала) или как функция параметра $(a/a_{\rm ex})^3$ (нижняя шкала), $a_{\rm ex}$ — боровский радиус экситона в CdSe. Линии *1*–3 отвечают значениям напряженности электрического поля *F*, В/м: *1* — 210, *2* — 410, *3* — 510.

4. Заключение

В заключение кратко обсудим возможные экспериментальные наблюдения предложенного нами нового электрооптического метода. В работах [1,2] исследовались спектры межзонного поглощения диспергированных в прозрачной диэлектрической матрице борносиликатного стекла ($\varepsilon_1 = 2.25$) нанокристаллов CdS ($\varepsilon_2 = 9.3$) размерами радиуса *a* от 1 до 10² нм. Эффективные массы электрона и дырки в CdS соответственно равнялись $m_e/m_0 = 0.205$ и $m_h/m_0 = 5$, т.е. $m_e \ll m_h$. Теоретический спектр экситона в полупроводниковых нанокристаллах (ПН) CdS, рассчитанный в работах [16,18], с хорошей точностью описывал экспериментальную зависимость спектра экситона от радиуса ПН a [1,2] в области размеров ПН $a \ge a_{\rm ex} = 2.5$ нм.

В экспериментальной работе [3] наблюдались пики просветления, связанные с переходами между уровнями размерного квантования экситона, в спектрах пропускания нанокристалла CdSe ($\varepsilon_2 = 9.4$) радиусом a = 5.0 нм, диспергированных в матрице силикатного стекла ($\varepsilon_1 = 2.25$). Эффективные массы электрона и дырки в ПН CdSe соответственно равнялись $m_e/m_0 = 0.13$ и $m_h/m_0 = 2.5$, т.е. $m_e \ll m_h$. При этом положения пиков просветления нанокристаллов CdSe в зависимости от величины радиусов ПН a в области размеров $a \simeq a_{\rm ex} = 4.55$ нм с хорошей точностью описывает спектр экситона [19].

Поместим квазинульмерные системы, изученные в условиях экспериментов [1-3] во внешнее однородное электрическое поле (ВОЭП) напряженностью *F* (17). Учет эффекта локального поля [20] приводит к тому, что в квазинульмерных системах [1-3] на ПН действует поле напряженностью

$$F_{\rm ins} = f^{-1}F, \qquad f = 3/[2 + (\epsilon_2/\epsilon_1)], \qquad (21)$$

где коэффициент f = 0.489 для ПН CdS и CdSe. При этом в формулах (13), (14) и (17) вместо величины Fнеобходимо взять F_{ins} (21).

На рис. 1 и 2 представлены величины сдвигов $\Delta \lambda_{1,0}^{t_h}(a,F)$ (14) уровней размерного квантования дырки в состоянии ($n_e = 1$, $l_e = 0$; t_h) в нанокристаллах CdS и CdSe соответственно в электрическом поле F. При расчете предполагалось выполнение условий (6), (10), (11 а) и (17). Из поведения $\Delta \lambda_{1.0}^{t_h}(a, F)$ в зависимости от радиуса ПН а и напряженности ВОЭП F вытекает, что с ростом радиуса $a > a_{\rm ex}$ величины штарковских сдвигов уровней размерного квантования дырки увеличиваются пропорционально a^3 , приближаясь к значениям штарковского сдвига энергии основного состояния экситона ΔV (18). Это происходит при величинах \bar{a}_c , равных значениям критических радиусов ПН $\bar{a}_c(1,0;0) = 3.24 a_{\text{ex}}$ (20) ($\bar{a}_c(1,0;0) = 8.1$ нм для ПН CdS и $\bar{a}_c(1,0;0) = 14.74$ нм для ПН CdSe), при которых в нанокристаллах CdS и CdSe с размерами $a > \bar{a}_{c}(1, 0; 0)$ могут возникать объемные экситоны.

Кроме того с ростом напряженности ВОЭП *F* наблюдается квадратичный эффект Штарка, согласно которому величины сдвигов $\Delta \lambda_{1,0}^{t_h}(a, F)$ (14) и $\Delta V(F)$ (18) увеличиваются пропорционально F^2 . При этом для ПН CdS с ростом величины *F* от 10³ до $1.23 \cdot 10^3$ В/м значение штарковского сдвига энергии основного состояния экситона $\Delta V(F)$ (18) увеличивается от $4.87 \cdot 10^2$ до $7.37 \cdot 10^2$ мэВ, а для ПН CdSe при изменении напряженности *F* от $2.1 \cdot 10^2$ до $5.1 \cdot 10^2$ В/м величина $\Delta V(F)$ (18) растет от $1.25 \cdot 10^2$ до $7.78 \cdot 10^2$ мэВ (рис. 1, 2).

Таким образом, установлено, что электрооптические свойства квазинульмерных систем, содержащих полупроводниковые нанокристаллы, в области межзонного поглощения определяются квантово-размерным квадратичным эффектом Штарка. Предложен новый электрооптический метод, дающий возможность определять значения критических радиусов нанокристаллов, в которых могут возникнуть объемные экситоны.

Работа выполнена при частичной поддержке Международного научного фонда "Відродження".

Список литературы

- А.И. Екимов, А.А. Онущенко. Письма ЖЭТФ, 40 (8), 337 (1984).
- [2] А.И. Екимов, А.А. Онущенко, Ал.Л. Эфрос. Письма ЖЭТФ, 43 (6), 292 (1986).
- [3] Ю.В. Вандышев, В.С. Днепровский, В.И. Климов. Письма ЖЭТФ, 53 (6), 301 (1991).
- [4] A.D. Yoffe. Adv. Phys., 42, 173 (1993).
- [5] А.И. Екимов, П.А. Скворцов, Т.В. Шубина. ЖТФ, 59 (3), 202 (1989).
- [6] K. Bajema, R. Marlin. Phys. Rev. B, 36, 1300 (1987).
- [7] T. Wood, S. Burrus. Appl. Phys. Lett., 44, 16 (1984).
- [8] С.И. Покутний. ФТТ, **39** (4), 606 (1997).
- [9] С.И. Покутний. ФТТ, **39** (4), 720 (1997).
- [10] S. Nomura, T. Kobayashi. Sol. St. Commun., 74 (10), 1153 (1990).
- [11] Н.А. Ефремов, С.И. Покутний. ФТТ, 32 (6), 1637 (1990).
- [12] С.И. Покутний. ФТП, 25 (4), 628 (1991).
- [13] S.I. Pokutnyi. Phys. Lett. A, 168 (5–6), 433 (1992).
- [14] Н.А. Ефремов, С.И. Покутний. ФТТ, 27 (1), 48 (1985).
- [15] В.Я. Грабовскис, Я.Я. Дзенис, А.И. Екимов. ФТТ, 31 (1), 272 (1989).
- [16] С.И. Покутний. ФТП, 30 (11), 1952 (1996).
- [17] S.I. Pokutnyi. Phys. Lett. A, 203 (5-6), 388 (1995).
- [18] С.И. Покутний. ФТТ, **38** (9), 2667 (1996).
- [19] С.И. Покутний. ФТТ, 34 (8), 2386 (1992).
- [20] S. Schmitt-Rink, D. Miller, D. Chemla. Phys. Rev. B, 35, 8113 (1987).

Редактор Т.А. Полянская

Size quantization Stark effect in quasi-zero-dimensional semiconductor structures

S.I. Pokutnyi

Illichivsk Educational Research Centre, Odessa State University, 68001 Illichivsk, the Ukraine