Исследование многослойных структур с InAs нанообъектами в кремниевой матрице методом трансмиссионной электронной микроскопии

© В.Н. Петров, Н.К. Поляков, В.А. Егоров, Г.Э. Цырлин[¶], N.D. Zakharov^{*}, P. Werner^{*}, В.М. Устинов[†], Д.В. Денисов[†], Н.Н. Леденцов[†], Ж.И. Алфёров[†]

Институт аналитического приборостроения Российской академии наук,

* Max-Planck Institute of Microstructure Physics, Halle/Saale, Germany

[†] Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 24 января 2000 г. Принята к печати 25 января 2000 г.)

Методом трансмиссионной электронной микроскопии высокого разрешения были исследованы многослойные структуры, содержащие встроенные в кремниевую кристаллическую матрицу слои InAs квантовых точек, выращенных методом молекулярно-пучковой эпитаксии. Выяснено, что свойства выращенной структуры сильно зависят от температуры подложки, последовательности ростовых циклов и толщин слоев. Выявлено, что кремниевая матрица может "принять" лишь ограниченный объем осажденного InAs в форме когерентных кластеров размерами порядка 3 нм и что при увеличении количества осажденного слоя InAs имеет место образование больших дислокационных кластеров InAs, накапливающих избыточный InAs во время заращивания кремнием.

Введение

Работы по совмещению А^{ШВV} и кремниевых технологий проводятся уже достаточно длительное время в связи с открывающимися широкими перспективами в области создания микроэлектронных устройств нового поколения. Однако до последнего времени основное внимание было уделено толстым слоям А^{ШВV} материалов на кремнии. Позднее по аналогии с А^{III}В^V гетероэпитаксиальными системами была предложена идея формирования непосредственно методом молекулярнопучковой эпитаксии (МПЭ) слоя когерентных островков InAs нанометрового размера (квантовых точек, KT), встроенных в кремниевую матрицу [1] с использованием эффекта спонтанного образования нанообъектов на начальных стадиях гетероэпитаксиального роста. Нами были получены и исследованы методами дифракции быстрых электронов на отражение (ДБЭО) и сканирующей туннельной микроскопии (СТМ) квантовые точки InAs, сформированные непосредственно методом МПЭ на поверхности кремния [2]. Исследования оптических свойств квантовых точек InAs, помещенных в кремниевую матрицу и заращенных слоем кремния, показали, что в спектре фотолюминесценции (ФЛ) появляется широкая линия (~ 100 мэВ) в районе длин волн 1300 нм при температуре наблюдения 10 К [3,4]. Однако примененные методики исследований не прозволяли получить данные о геометрических параметрах и когерентной природе строенных в кремниевую матрицу InAs KT. В работах [5] была предложена модель процесса самоорганизации квантовых точек, состоящая в создании многослойных структур с вертикально связанными квантовыми точками (ВСКТ), и приведены подтверждающие

экспериментальные данные по "эффективной" самоорганизации Si_{0.25}Ge_{0.75} на поверхности Si. Использование структур с ВСКТ позволило, в частности, значительно улучшить характеристики $A^{III}B^V$ лазерных структур на основе InAs KT [6].

Цель данной работы — исследование методом трансмиссионной электронной микроскопии (ТЭМ) многослойных структур с встроенными в кремниевую кристаллическую матрицу слоями InAs KT, выращенных методом МПЭ.

Методики экспериментов

Эпитаксиальный рост структур производился на установке МПЭ Riber-Supra (ISA Riber, Франция). Для создания потоков индия и мышьяка использовались стандартные эффузионные ячейки, для напыления кремния применялся источник с электронно-лучевым испарителем. Для получения атомарно-чистой структурно упорядоченной поверхности Si-подложки проходили подробно описанную в [7] предростовую подготовку, состоящую из химической обработки и вакуумного двухступенчатого термического отжига. В качестве подложек были использованы пластины кремния *n*-типа КЭФ-4.5 (100), которые механически фиксировались на безиндиевых молибденовых подложкодержателях. При росте использовался режим непрерывного вращения держателя. После удаления окисного слоя с поверхности подложки перед формированием InAs выращивался кремниевый буферный слой при температуре подложки (T_s) 630-640°С. Структура поверхности в процессах термического отжига и роста контролировалась с помощью системы регистрации и компьютерной обработки картин ДБЭО, состоящей из видеокамеры, телевизионного монитора, видеомагнитофона и устройства

¹⁹⁸¹⁰³ Санкт-Петербург, Россия

[¶] Fax: (812) 251 7038

E-mail: cirlin@beam.ioffe.rssi.ru

Рис. 1. Последовательность слоев и технологические параметры процессов роста исследованных образцов.

ввода видеоинформации в ЭВМ [8]. Последовательность слоев и технологические параметры процессов роста (температура подложки, количество и толщина слоев) исследованных образцов представлены на рис. 1. Скорости роста составляли 0.03 и 0.02 нм/с InAs и Si соответственно. Пределы изменения T_s были выбраны из ранее полученных результатов, свидетельствующих о том, что при увеличении T_s свыше 450°С вместо пространственно однородного массива островков нанометрового диапазона образуется структура, содержащая дисло-

кационные кластеры размером до 400 нм [2]. Нижний предел в температурном интервале был выбран по причине того, что покрывающий слой Si, выращенный при низких T_s обладает крайне низким кристаллическим качеством, что приводит к невозможности получения приборных структур. В данном диапазоне T_s , в соответствии с ранее полученными данными, рост InAs KT на поверхности кремния осуществляется по механизму Фольмера–Вебера [4].

Добротность кристаллической структуры и композиция выращенных слов исследовались методом ТЭМ с различным разрешением на приборе JEOL JEM-4000 EX, а также методом рентгеновского микроанализа (PMA) на оснащенном приставкой Voyager I (Ge-детектор) электронном микроскопе Philips CM20T. Компьютерное моделирование и программная обработка TEM изображений были выполнены с использованием программного пакета MacTempas [9].

Результаты и обсуждение

На рис. 2 представлены снятые при низком разрешении ТЭМ изображения фрагментов поперечного сечения (*a*) и поверхности (*b*) образца А. Из рисунка видно,

Рис. 2. ТЭМ изображения поперечного сечения (*a*) и поверхности (*b*) образца А. Экстра рефлексы от островков InAs отмечены на дифракционной картине (см. вставку).

Рис. 3. ТЭМ изображение поперечного сечения границы раздела между матрицей Si и кремниевыми островками (A), сформировавшимися на дне мелкого углубления.

Рис. 4. ТЭМ изображение поперечного сечения образца В. Отмечены два слоя InAs.

что InAs-включения в виде островков расположены на дне поверхностных углублений (16 нм), которые образуются после последующего заращивания кремнием. ТЕМ изображения поверхности этих островков демонстрируют картины типа "квадратный Муар". На вставке к рис. 2, b представлены соответствующие картины микродифракции электронов на просвет, которые имеют четко различаемые рефлексы как от кремниевой матрицы, так и от кластеров InAs, причем математическая обработка разделяющих рефлексы расстояний (в обратном пространстве) показывает величину рассогласования кристаллических решеток InAs и Si приблизительно 10%, что соответствует общеизвестным данным по рассогласованию решеток InAs и Si \sim 11%. Снятые в просвечивающем режиме PMA спектры, взятые от кластеров InAs, также имели четко выраженные дополнительные пики In и As. То, что эти островки обычно занимают мелкие углубления, частично показывает, что при заращивании кремнием рост Si не происходит в непосредственной близости от InAs-островков. Вероятной причиной этого эффекта может быть образование смачивающего слоя вокруг островка, приводящего к пассивации поверхности. Снятое в режиме высокого разрешения ТЭМ изображение в поперечном сечении фрагмента такой поверхностной структуры, образованной на дне мелкого углубления, показано на рис. 3. Из этого изображения можно сделать вывод о том, что атомная структура поверхностного слоя различается от структуры объема и структур атомных плоскостей $\langle 111 \rangle$ маленьких островков кремния (A, рис. 3), сформированных на ней. Кроме того, для поверхностного слоя имеет место сдвиг относительно соответствующих атомных плоскостей кремниевой матрицы на a/4[110].

На рис. 4 представлено снятое в режиме низкого разрешения ТЭМ изображение поперечного сечения образца В. Стрелками отмечены два слоя InAs-включений в кремниевую матрицу. Толщина кремниевого спейсера между слоями InAs является несколько меньшей (5 нм), чем ожидалось исходя из данных по количеству осажденного кремния (6 нм, рис. 1). Эффективная толщина InAs-включений также меньше ожидаемых 4 нм, что свидетельствует о том, что малая часть осажденного InAs была захвачена в нанообъекты после заращивания кремнием. На наш взгляд, наиболее вероятной причиной этого эффекта является увеличение температуры подложки после осаждения InAs и при заращивании сверхтонким (2 нм) слоем кремния. Было обнаружено, что данный этап является достаточно важным для сохранения вы-

Рис. 5. ТЭМ изображение поперечного сечения образца В, снятое в режиме высокого разрешения. Стрелками отмечены кластеры InAs.

сокого качества структуры, поскольку избыточный InAs эффективно испаряется при 620°С, что предотвращает образование больших островков InAs, как в случае с образцом А.

Также было отмечено, что общая площадь, занимаемая углублениями (рис. 2, b), в образце В примерно в 2 раза меньше, чем в образце А. С другой стороны, в образце В эти углубления почти пусты, в то время как в образце А они содержат релаксированные островки InAs. Таким образом, повышенная температура во время заращивания кремнием является существенной для переиспарения излишка InAs. Для анализа решеточной структуры и размеров встроенных в кремниевую матрицу кластеров InAs поперечные сечения образцов были исследованы методом TEM с высоким разрешением. На рис. 5 представлено ТЭМ изображение поперечного сечения образца В. Стрелками отмечены образования с размерами около 3 нм в диаметре и латерально отстоящие друг от друга на 0.5–1 нм. Более того, в расположении кластеров не наблюдается четкой вертикальной корреляции.

Нами было проведено численное компьютерное моделирование процессов формирования малых кластеров InAs в кремниевой матрице и были получены смоделированные ТЕМ изображения. Для вычислений была использована кристаллографическая модель кластеров InAs, представленная на рис. 6, а. В модели был рассмотрен случай, когда при эпитаксиальном росте InAs на проверхности кремниевой матрицы происходит замещение атомов кремния на взаимосвязанные атомы In и As, что приводит к уменьшению симметрии матрицы. Было проведено моделирование процессов роста для близких к экспериментальным условиям для различных толщин встраиваемого в кремниевую матрицу арсенида индия. Результаты моделирования показаны на рис. 6, с. Для малых толщин (~ 1.2 нм), как и ожидалось, соответствие довольно низкое, в то время как в случае более толстых кристаллов (около 4 нм) смоделированное ТЭМ изображение демонстрирует хорошее соответствие с экспериментом (рис. 5). Специфический характер наблюдаемого контраста проистекает из-за большого различия в атомных амплитудах рассеяния на In, As и Si.

7 представлено ТЕМ изображение Ha рис. поперечного сечения образца С. Хорошо различимы (отмечены 6 слоев стрелками), сформированных когерентными кластерами InAs. Как и в выращенном при той же температуре (400°С) образце А, не наблюдается эффекта уменьшения расстояния между слоями КТ. Отличительная особенность этой структуры состоит в том, что в верхней части выращенной многослойной структуры наблюдается высокая плотность структурных дефектов двух типов, которые начинают формироваться преимущественно после четвертого слоя InAs. Одной из возможных причин наличия большого числа дефектов

Рис. 6. Атомная модель кластеров InAs в матрице Si (a) и два смоделированных изображения высокого разрешения для толщин образца 1.2 нм (b) и 4 нм (c).

Рис. 7. ТЭМ изображение поперечного сечения образца С. Стрелками отмечены шесть слоев, содержащих когерентные кластеры InAs.

может быть то, что промежуточные слои кремния выращиваются при повышенном фоновом давлении мышьяка, в результате чего имеет место встраивание атомов As в растущую кремниевую структуру. Первые результаты работ по влиянию фонового давления мышьяка на свойства автоэпитаксиальных слоев кремния представлены в отдельной статье [7].

При исследовании структур с ВСКТ методом возбуждения фотолюминесценции спектры до настоящего момента получить не удалось, что, по-видимому, связано в первую очередь с наличием большого числа дефектов в кристаллической структуре промежуточных слоев кремния между слоями КТ. Другой причиной отсутствия линий ФЛ может быть необходимость более тщательного подбора всех технологических параметров роста (температура подложки, толщины слоев InAs и Si спейсера), которые, по всей видимости, по аналогии с системами (InGaAs)/GaAs [10] оказывают значительное влияние на характеристики структур с BCKT.

Заключение

Таким образом, нами было экспериментально показано, что слои с когерентными включениями InAs могут быть сформированы в монокристаллической кремниевой матрице. Выяснено, что качество выращенных структур сильно зависит от температуры подложки, последовательности роста и геометрических параметров образца, а также то, что кремниевая матрица может принять лишь ограниченный объем осажденного InAs в форме когерентных кластеров. Выяснено, что при увеличении количества осажденного слоя InAs имеет место образование больших дислоцированных кластеров InAs, накапливающих избыточный InAs во время заращивания кремнием. С учетом ранее полученных данных СТМ исследований [3] можно сделать вывод о том, что средняя толщина осажденного InAs, толщина спейсера Si между включениями InAs и температура подложки во время осаждения InAs и заращивания кремнием должны быть оптимизированы для получения структур высокого качества с многократными включениями InAs в матрицу Si.

Авторы благодарят Ю.Б. Самсоненко за участие в ростовых экспериментах и И.П. Сошникова за полезные консультации.

Данная работа выполнена при частичной поддержке ИНТАС (грант 96-0242), РФФИ (проекты 98-02-18317 и 99-02-16799), научных программ "Перспективные технологии и устройства микро- и наноэлектроники" (проект 02.04.5.1.40.Э.46) и "Физика твердотельных наноструктур" (проект 98-2029).

Список литературы

 N.N. Ledentsov. Proc. 23th Int. Conf. Phys. Semiconductors, Berlin, 1996, ed. by M. Scheffler and R. Zimmermann (World Scientific, Singapoure, 1996) v.1, p. 19.

- [2] Г.Э. Цырлин, В.Н. Петров, В.Г. Дубровский, С.А. Масалов, А.О. Голубок, Н.И. Комяк, Н.Н. Леденцов, Ж.И. Алфёров, Д. Бимберг. Письма ЖТФ, 24 (8), 10 (1998).
- [3] G.E. Cirlin, V.G. Dubrovskii, V.N. Petrov, N.K. Polyakov, N.P. Korneeva, V.N. Demidov, A.O. Golubok, S.A. Masalov, D.V. Kurochkin, O. M. Gorbenko, N.I. Komyak, V.M. Ustinov, A.Yu. Egorov, A.R. Kovsh, M.V. Maximov, A.F. Tsatsul'nikov, B.V. Volovik, A.E. Zhukov, P.S. Kop'ev, Zh.I. Alferov, N.N. Ledentsov, M. Grundmann, D. Bimberg. Semicond. Sci. Technol., 13, 1262 (1998).
- [4] Г.Э. Цырлин, В.Н. Петров, В.Г. Дубровский, Ю.Б. Самсоненко, Н.К. Поляков, А.О. Голубок, С.А. Масалов, Н.И. Комяк, В.М. Устинов, А.Ю. Егоров, А.Р. Ковш, М.В. Максимов, А.Ф. Цацульников, Б.В. Воловик, А.Е. Жуков, П.С. Копьев, Н.Н. Леденцов, Ж.И. Алфёров, Д. Бимберг. ФТП, **33** (9), 1066 (1999).
- [5] J. Tersoff, C. Teichert, M.G. Lagally. Phys. Rev. Lett., 76, 1675 (1996).
- [6] N.N. Ledentsov, V.A. Shchukin, M. Grundmann, N. Kirstaedter, J. Böhrer, O. Schmidt, D. Bimberg, S.V. Zaitsev, V.M. Ustinov, A.E. Zhukov, P.S. Kop'ev, Zh.I. Alferov, O.A. Kosogov, S.S. Ruvimov, P. Werner, U. Gösele, J. Heydenreich. Phys. Rev. B, 54, 8743 (1996).
- [7] Г.Э. Цырлин, В.Н. Петров, Н.К. Поляков, С.А. Масалов, А.О. Голубок, Д.В. Денисов, Ю.А. Кудрявцев, Б.Я. Бер, В.М. Устинов. ФТП, **33** (10), 1158 (1999).
- [8] Г.М. Гурьянов, В.Н. Демидов, Н.П. Корнеева, В.Н. Петров, Ю.Б. Самсоненко, Г.Э. Цырлин. ЖТФ, 67 (8), 111 (1997).
- [9] R. Kilaas. Proc. 45th Annual EMSA Meeting, ed. by G.W. Bailey (San-Francisco Press, San Francisco, 1987) p. 66.
- [10] Г.Э. Цырлин, В.Н. Петров, С.А. Масалов, А.О. Голубок. ФТП, 33 (6), 733 (1999).

Редактор В.В. Чалдышев

An transmission electron microscopy study of multilayer structures of InAs nanoobjects in a silicon matrix

V.N. Petrov, N.K. Polyakov, V.A. Egorov, G.E. Cirlin, N.D. Zakharov*, P. Werner*, V.M. Ustinov[†], D.V. Denisov[†], N.N. Ledentsov[†], Zh.I. Alferov[†]

Institute for Analytical Instrumentation RAS, 198103 St.Petersburg, Russia * Max-Planck Institute of Microstructure Physics, Halle/Saale, Germany † loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia