Влияние нанокристаллических включений на фоточувствительность пленок аморфного гидрированного кремния

© О.А. Голикова, М.М. Казанин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 28 декабря 1999 г. Принята к печати 28 декабря 1999 г.)

Проведены исследования фоточувствительности пленок аморфного гидрированного кремния, содержащие включения нанокристаллов Si. Установлена корреляция фоточувствительности с особенностями рамановских спектров и исследованы спектральные характеристики фотопроводимости. Показано, что максимальной фоточувствительностью обладают пленки с наиболее сформированным средним порядком в их структуре.

1. Введение

Пленки аморфного гидрированного кремния (*a*-Si:H), содержащие включения второй фазы с размерами порядка нескольких нанометров, т. е. негомогенные наноструктурированные пленки, вызывают в настоящее время значительный интерес как с научной, так и с прикладной точек зрения. Действительно, как было показано [1–5], пленки *a*-Si:H такого типа имеют повышенные величины фоточувствительности ($K = \sigma_{\rm ph}/\sigma_d$; σ_d и $\sigma_{\rm ph}$ темновая проводимость и фотопроводимость): фоточувствительность на 2 порядка превышает значения для "стандартного" *a*-Si:H приборного качества при определении в идентичных условиях. Этот результат оказался неожиданным, так как ранее считалось, что наилучшими фотоэлектрическими характеристиками, напротив, обладают наиболее гомогенные пленки.

Вопросы о природе включений и о связи величины *К* с включениями нельзя считать решенными, хотя это и необходимо для дальнейшего развития физики наноструктурированных пленок. Настоящая работа, с нашей точки зрения, представляет собой некоторый шаг, сделанный в направлении решения этих вопросов.

Экспериментальные результаты и их обсуждение

Пленки *a*-Si: Н были получены тем же методом, что и пленки, исследованные в [4-6].

Для получения информации о структуре пленок использовали метод рамановской спектроскопии. Спектры снимались на приборе U-1000 (интервал частот $\omega = 20-620 \text{ см}^{-1}$, шаг 1 см⁻¹, спектральная ширина щели 5 см⁻¹, точность измерений ±2.5 см⁻¹). Длина волны возбуждающего излучения составляла $\lambda = 488 \text{ нм}$, мощность 100 мВт [7]. На рис. 1 представлены типичные спектры для ряда пленок: пленка "стандартного" *a*-Si:H (кривая *I*), наноструктурированные пленки (кривые 2–4). Вблизи полосы ТО-фононов для некоторых пленок (например, кривая *2*) обнаружены полосы при $\omega = 515-517 \text{ см}^{-1}$, характерные для нанокристаллов Si (*nc*), хотя эксперименты показали, что распределение

нанокристаллов в пленках нельзя считать равномерным. Размеры нанокристаллов (d_R) и вклады кристаллической фазы (X_c) оценивались общепринятыми методами. Они составили: $d_R = 4-5$ нм, $X_c = 0.05-0.2$. Кроме того, как будет обсуждаться далее, рамановские спектры анализировались и в области LA-фононов — вблизи $\omega = 300$ см⁻¹.

Рис. 1. Рамановские спектры для пленок *a*-Si:H: 1 — стандартная пленка; 2 — пленка, содержащая включения нанокристаллов Si ($d_R = 5$ нм, $X_c = 0.05$) и имеющая $K = 10^4$; 3, 4 — пленки, содержащие включения меньших размеров и имеющие $K = 10^5$ (3) и 10^6 (4).

Рис. 2. Зависимость фоточувствительности K от температуры осаждения пленки T_s . Давление силана в процессе осаждения 40–60 м Торр, удельная мощность высокочастотного разряда 1.3–1.5 Вт/см².

Рис. 3. Зависимость фоточувствительности от энергии активации темновой проводимости: *1* — пленки стандартного *a*-Si:H; *2* — пленки *a*-Si:H с включениями нанокристаллов Si, обнаруженными рамановской спектроскопией; *3* — пленки *a*-Si:H, в которых рамановская спектроскопия не обнаруживает включения нанокристаллов Si.

Фоточувствительность *K* определялась при комнатной температуре; величина $\sigma_{\rm ph}$ измерялась при энергии фотонов $\hbar\omega = 2$ эВ и скорости генерации фотоносителей $G = 10^{19} \,\mathrm{cm^{-3} \cdot c^{-1}}$.

При увеличении X_c величина K падала с 10⁴ до 10³. Тем не менее, если размеры нанокристаллических включений Si составляют 4–5 нм, а их вклад ~ 5%, то пленки *a*-Si: H по величине K еще продолжают отвечать "стандартному" материалу приборного качества.

Однако в рамановских спектрах пленок, имеющих бо́льшие величины K, полосы, характерные для нанокристаллов Si, отсутствуют (рис. 1, кривые 3, 4). Это скорее всего является следствием меньших размеров нанокристаллов, содержащихся в аморфной матрице.

Данные, представленные на рис. 2, показывают, что, судя по величине *K*, образованию нановключений благо-

приятствует рост температуры осаждения T_s . Здесь необходимо отметить, что для пленок, имеющих $K > 10^4$, характерно повышенное примерно в 2 раза, содержание водорода C_H по сравнению со "стандартными" пленками *a*-Si: H, осажденными при таких же температурах [5].

На рис. З представлены зависимости К от энергии активации темновой проводимости $\Delta E = (\varepsilon_c - \varepsilon_F)_{T=0}$, где ε_c — край зоны проводимости, ε_F — уровень Ферми. Точки 1 относятся к "стандартному" a-Si: H. Хотя при $\Delta E > 0.85$ эВ $\sigma_{\rm ph}$ падает, σ_d тоже падает [6], и поэтому величина К изменяется незначительно. Кривая 2 относится к пленкам a-Si: H, в которых методом рамановской спектроскопии обнаружены нанокристаллы Si; в этом случае $\sigma_{\rm ph}$ падает более резко, чем σ_d , и поэтому К уменьшается, достигая 10³. Наконец, точки 3 относятся к пленкам, где методом рамановской спектроскопии нанокристаллы Si обнаружены не были (см. рис. 1, кривые 3, 4). Как видно из рис. 3, именно эти пленки имеют наибольшие *K*, достигающие 10⁶ вследствие возрастания $\sigma_{\rm ph}$. Таким образом, из рис. 3 следует, что при $\Delta E = \text{const}$ величина K определяется структурой пленки.

В работе [4] мы привели данные о спектральной зависимости $\sigma_{\rm ph}$ для одной из пленок с повышенной фоточувствительностью: было показано, что наряду с основным максимумом на длине волны $\lambda = 620$ нм наблюдается дополнительный максимум при $\lambda = 540$ нм. Поскольку соответствующая энергия ($\hbar\omega = 2.3$ эВ) по величине близка к ширине запрещенной зоны E_g нанокристаллического кремния, предполагалось, что спектральная характеристика $\sigma_{\rm ph}$ может служить тестом для обнаружения нанокристаллов Si в пленках *a*-Si: H в том случае, когда их не удается обнаружить с помощью рамановской спектроскопии.

Здесь мы приводим спектральные характеристики фотопроводимости для ряда пленок *a*-Si: Н в относительных единицах: $\sigma_{\rm ph}/\sigma_{\rm ph(max)}$, где $\sigma_{\rm ph(max)}$ — величина фотопроводимости в максимуме спектральной характеристики (рис. 4, *a*).

На рис. 4, *а* представлены данные для "стандартной" пленки *a*-Si:H, имеющей $\Delta E = 0.92$ эB, $K = 10^4$, а также для трех пленок с последовательно возрастающей величиной *K*. Кривая для стандартной пленки с максимумом при $\lambda = 640$ нм не имеет особенностей; индекс асимметрии этой кривой равен 1. Максимумы всех других пленок несколько сдвинуты в сторону коротких волн, а сами кривые отличаются как друг от друга, так и от кривой, полученной для стандартной пленки *a*-Si:H. Речь идет об их особенностях при $\lambda = 540$ нм.

Если кривая для пленки, у которой $K = 10^5$, при $\lambda = 540$ нм имеет максимум, то для другой пленки, с большей величиной K, при $\lambda = 540$ нм наблюдается лишь плечо (рис. 4, *a*). Наконец, спектр пленки с максимальной величиной K при $\lambda = 540$ нм особенностей не имеет. Подчеркнем, однако, что в этом случае, в отличие от "стандартного" *a*-Si:H, индекс асимметрии равен 1.3.

Рис. 4. Спектральные характеристики пленок стандартного *a*-Si:H (1), пленок с последовательно возрастающей фоточувствительностью (2–4) (*a*) и взаимосвязь фоточувствительности с особенностями спектральных характеристик при $\lambda = 540$ нм (*b*).

Рис. 5. Фоточувствительность в зависимости от величины отношения $I_{\rm LA}/I_{\rm TO}$.

Корреляция величины K с особенностями спектральных характеристик $\sigma_{\rm ph}$ при $\lambda = 540$ нм показана на рис. 4, *b*.

Из рассмотрения данных, представленных на рис. 4, следует, что при некоторых критических условиях спектральная характеристика σ_{ph} перестает "чувствовать" присутствие включений нанокристаллов Si. Эти условия, по-видимому, означают как уменьшение размеров включений, так и более равномерное их распределение в пленках. Тогда, очевидно, вклад кристаллической фазы в проводимость перестает быть заметным.

Обратимся теперь снова к рамановским спектрам (рис. 1). Рассмотрим величину K в зависимости от величины отношения $I_{\rm LA}/I_{\rm TO}$, где $I_{\rm LA}$ — интенсивность при $\omega = 300 \,{\rm cm}^{-1}$ в LA-полосе, а $I_{\rm TO}$ — интенсивность

в максимуме ТО-полосы (рис. 5). I_{LA} , нормированная по отношению к I_{TO} , будет рассматриваться как характеристика среднего порядка в структуре пленки. Действительно, ранее [8] LA-полосу связывали с существованием включений кластеров в пленках *a*-Si:H. Такой же точки зрения придерживаются и в настоящее время. В частности, проводятся расчеты рамановских спектров для моделей *a*-Si:H с различным средним порядком (например, см. [9]).

Данные, приведенные на рис. 5, показывают, что возрастание *К* непосредственно связано с формированием среднего порядка в структуре пленки. Наиболее сформированный средний порядок можно охарактеризовать как равномерное распределение включений нанокристаллов Si, дефекты на границах которых полностью пассивированы водородом. Оптимальные размеры включений остаются пока не известными.

3. Заключение

В заключение перечислим основные результаты настоящей работы и сделаем на их основе выводы.

1. Величина фоточувствительности *К* пленок *a*-Si:H, содержащих включения нанокристаллов Si с размерами $d_R = 4-5$ нм, падает от 10^4 до 10^3 по мере увеличения вклада таких включений ($X_c = 0.05-0.2$). В этом случае нельзя говорить о формировании среднего порядка в структуре пленок. Указанные включения распределены в аморфной матрице не равномерно, и дефекты (оборванные Si-Si-cвязи) на их границах, не пассивированные водородом, представляют собой дополнительные центры рекомбинации фотоносителей.

2. Спектральные характеристики $\sigma_{\rm ph}$ пленок с $K \approx 10^5$ "чувствуют" присутствие нанокристаллических включений Si. В структуре таких пленок начинает формироваться средний порядок.

3. Максимальные K (до 10⁶) имеют пленки с наиболее сформированным средним порядком. По уровню упорядочения структуры они занимают некоторое промежуточное положение между "стандартным" *a*-Si:H и кристаллическим Si. Как следствие этого, фотопроводимость таких наноструктурированных пленок радикально возрастает по сравнению с фотопроводимостью *a*-Si:H. В то же время, как было показано ранее [1–3], их оптические свойства (E_g и высокий коэффициент поглощения в видимой области) не изменяются по сравнению с характерными для *a*-Si:H. Именно это сочетание свойств делает наноструктурированные пленки особенно привлекательными для практических применений.

Список литературы

- P. Roca i Cabarrocas, S. Hamma, P. St'ahel, C. Longeaurd, J.P. Kleider, R. Meaudre, M. Meaudre. *Proc. 14th European Photovoltaic Energy Conference* (Barselona, 1997) P5A.20.
- [2] P. St'ahel, S. Hamma, P. Sladek, P. Roca i Cabarrocas. *Abstracts of ICAMS 17* (Budapest, 1997) Th-B214.

765

- [3] P. Roca i Cabarrocas, S. Hamma, S.N. Sharma, G. Viera, E. Bertran, J. Costa. *Abstracts of ICAMS 17* (Budapest, 1997) Th-B3/5.
- [4] О.А. Голикова, М.М. Казанин. ФТП, 33, 110 (1999).
- [5] О.А. Голикова, М.М. Казанин. ФТП, **33**, 336 (1999).
- [6] О.А. Голикова, В.Х. Кудоярова. ФТП, 29, 1128 (1995).
- [7] О.А. Голикова, В.Х. Кудоярова. ФТП, **32**, 876 (1998).
- [8] K. Malley, J.S. Lannin. Phys. Rev. B, 36, 1146 (1987).
- [9] Marinov, N. Zotov, N. Mousseau, G. Barkema. Abstracts of ICAMS 17 (Budapest, 1997) Tu-P1/15.

Редактор Л.В. Шаронова

Effect of nanocrystalline inclusions on photosensitivity of amorphous hydrogenated silicon films

O.A. Golikova, M.M. Kazanin

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract A study of photosensitivity (K) of amorphous hydrogenated silicon films containing nanocrystalline Si inclusions has been done. Correlations between K and peculiarities of the Raman spectra and the spectral characteristics of the photoconductivity have been established. It was shown that the maximal K have the films with the most perfect middle-range order in their structure.