Оптические и электрические свойства пористого арсенида галлия

© Н.С. Аверкиев, Л.П. Казакова, Э.А. Лебедев, Ю.В. Рудь, А.Н. Смирнов, Н.Н. Смирнова Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 24 декабря 1999 г. Принята к печати 28 декабря 1999 г.)

Впервые проведено исследование фотолюминесценции, комбинационного рассеяния света и переноса носителей заряда в пористом GaAs, приготовленном на основе кристаллического GaAs (111), А и В, *п*типа проводимости. Установлено, что максимумы основной полосы фотолюминесценции с поверхностей А и В наблюдаются вблизи энергий 1.82 эВ (A) и 1.88 эВ (B). Определена величина дрейфовой подвижности электронов, она составляет $\sim 4 \cdot 10^{-4}$ см²/В·с. Размер нанокристаллитов в пористом GaAs определялся как из спектров фотолюминесценции, так и из рамановского сдвига. Полученные величины оказались близкими и составляли 6-8 нм.

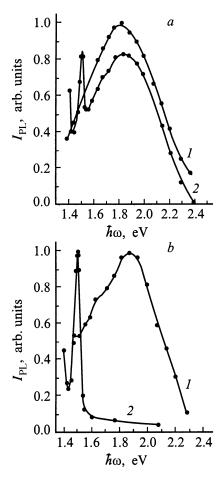
1. Введение

Большое количество работ, посвященных получению и исследованию свойств пористого кремния, инициировано обнаруженной возможностью трансформации физикохимических свойств исходного материала (кремния) с помощью достаточно простого способа воздействия, а именно — анодного травления. Представляется весьма перспективным расширение области применения этого способа на другие полупроводниковые материалы, в частности на арсенид галлия, являющийся одним из основных материалов полупроводниковой электроники. В случае положительного результата это позволит расширить спектральный диапазон люминесцентной электроники, а также создать новые типы светодиодов и лазеров. Кроме того, используя пористый арсенид галлия (por-GaAs) в качестве промежуточного слоя, можно получить новые типы гетеропереходов. Попытки, предпринятые в этом направлении, показали, что эта проблема может быть успешно решена [1]. Особый интерес может вызвать сопоставление свойств пористых структур, изготовленных из таких различных по своим физико-химическим свойствам материалов, как кремний и арсенид галлия.

В настоящее время проблеме получения *por*-GaAs и исследованию его свойств посвящено всего несколько работ [2–5]. В основном в этих работах исследовался сдвиг максимума полосы фотолюминесценции (ФЛ) в коротковолновую область при воздействии на материал различными способами. Обнаруженный в работах [2,3] сдвиг максимума ФЛ определяется, по-видимому, поверхностным слоем другого химического состава, и только по результатам работ [4,5] может идти речь о том, что сдвиг ФЛ определяется квантово-размерными эффектами в нанокристаллитах GaAs. В литературе отсутствуют сведения об электрических свойствах *por*-GaAs и, в частности, совсем не изучен перенос носителей заряда.

В данной работе сообщается о технологии изготовления *por*-GaAs. На полученных образцах были измерены спектры ФЛ, комбинационного рассеяния и проведено исследование дрейфовой подвижности носителей заряда.

2. Экспериментальные результаты и их обсуждение


2.1. Изготовление образцов por-GaAs

Образцы por-GaAs были получены способом электрохимического травления GaAs (111) n-типа проводимости с концентрацией носителей тока $\sim 7 \cdot 10^{15} \, \mathrm{cm}^{-3}$. При такой ориентации каналы травления образовывались перпендикулярно поверхности образца. Травление осуществлялось в водном растворе плавиковой кислоты (8:1 по объему) при подсвечивании лампой накаливания. Плотность тока составляла $700-800 \, \mathrm{MA/cm}^2$. Каналы травления образовывались на обеих сторонах — А и В. При использовании электролита, содержащего изопропиловый спирт, на поверхности образца появлялась пленка другого цвета, а каналы травления не образовывались.

2.2. Фотолюминесценция

Измерение спектров стационарной ФЛ $I_{\rm PL}(\hbar\omega)$ осуществлялось при возбуждении излучением аргонового (энергия фотонов $\hbar\omega \approx 2.4-2.7$ эВ, мощность $\sim 100\,{\rm MBT/cm^2}$) или гелий-кадмиевого (энергия фотонов $\hbar\omega \approx 2.82$ эВ, мощность $\sim 10\,\mathrm{мBr/cm^2}$) лазеров. Для устранения возможного побочного излучения на выходе лазера помещали оптический фильтр, который пропускал только основное излучение лазера, а на входе монохроматора помещали фильтр, который не пропускал лазерное излучение. ФЛ анализировалась с помощью монохроматора МДР-3 с решеткой 600 штрихов/мм и фотоэлектронным умножителем ФЭУ-62. Спектры ФЛ нормировались с учетом спектральной чувствительности фотодетектора и оптического пропускания измерительного тракта установки. Спектральное разрешение для выполненных исследований было не хуже 1 мэВ.

На рис. 1 приведена спектральная зависимость $\Phi \Pi$ одного из образцов *por*-GaAs как со стороны A, так и со стороны B при двух температурах T=300 и 77 К. Спектры $\Phi \Pi$ характеризуются наличием широкой полосы излучения, лежащей в области собственного поглощения GaAs. Ширина полосы на полувысоте при

Рис. 1. Спектры фотолюминесценции *por*-GaAs с поверхностей A (a) и B (b) при T=300 (I) и 77 K (2).

 $300\,\mathrm{K}$ составляет $\delta_{1/2}\approx0.65-0.70\,\mathrm{9B}$. Эта величина меньше, чем приводится в [3] для пористого арсенида галлия, однако больше, чем в пористом кремнии [5,6].

Характерный для стороны A максимум ФЛ при 300 K обычно локализован при $E_A \approx 1.82$ эB, а для стороны B при $E_B \approx 1.88$ эB. Различие между этими значениями и шириной запрещенной зоны GaAs достигает соответственно $\Delta E_A \approx 0.40$ эВ и $\Delta E_B \approx 0.46$ эВ. Различие между E_A и E_B может быть обусловлено как физикохимическими особенностями поверхностей A и B, так и распределением электрического поля вокруг образца при анодировании.

Рассмотрим типичные для сторон A и B спектры Φ Л при $T=77\,\mathrm{K}$. На стороне A максимум Φ Л практически не изменяет своего энергетического положения по сравнению с максимумом при 300 K. Различная температурная зависимость (положительная, отрицательная, нулевая) энергии максимума Φ Л наблюдалась и на пористом кремнии. В частности, в работе [7] было показано, что положительная или отрицательная зависимость энергии максимума Φ Л от температуры определяется механизмом излучения света и в конечном счете — размером нанообъектов, образующих пористый

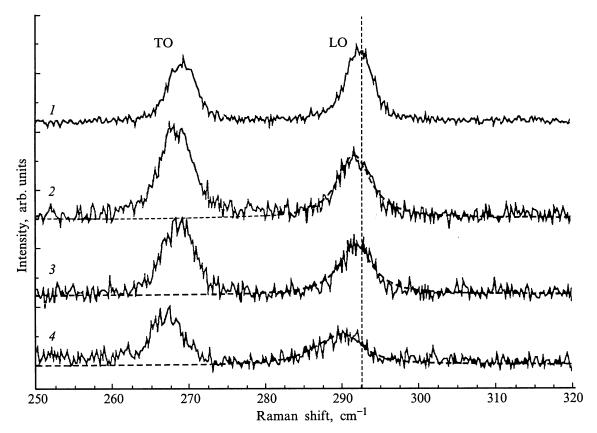
кремний. Такое температурное поведение максимума ФЛ может служить подтверждением наличия наноструктуры в образцах por-GaAs. На стороне В основная полоса при $T=77\,\mathrm{K}$ исчезает. В более длинноволновой части спектра как на стороне В, так и на стороне А виден узкий пик при энергиях 1.502 и $1.51\,\mathrm{эB}$ соответственно. Этот пик связан, по-видимому, с квазимежзонными переходами в исходном GaAs при $T=77\,\mathrm{K}$.

Сдвиг основной полосы ФЛ образцов *por*-GaAs, полученных анодным травлением, по сравнению с кристаллическим GaAs может быть объяснен, если предположить, что имеет место размерное квантование энергии носителей тока в результате образования нанообъектов.

Изменение энергии перехода, обусловленное размерным квантованием, может быть представлено в виде [8]

$$\Delta E = \frac{\pi^2 \hbar^2}{2d^2} \left(\frac{1}{m_t^e} + \frac{1}{m_h^h} \right). \tag{1}$$

Если считать, что спектр $\Phi \Pi$ создается излучением набора осцилляторов, то самое большое количество осцилляторов излучает свет с энергией $E=E_{\rm max}$, где $E_{\rm max}$ — энергия максимума спектра $\Phi \Pi$. Глубина потенциальной ямы для этих нанообъектов есть


$$\Delta E = E_{\text{max}} - E_g, \tag{2}$$

 E_g — ширина запрещенной зоны. Приравнивая (1) и (2), оценим размер кристаллитов, излучение которых определяет максимальную энергию спектра излучения $\Phi\Pi$ для стороны B. Этот размер составляет ~ 6 нм.

2.3. Комбинационное рассеяние

Спектры комбинационного рассеяния света измерялись при комнатной температуре в геометрии обратного рассеяния с помощью автоматизированной установки на основе двойного решеточного монохроматора ДФС-24. В качестве источника возбуждения использовался Ar^+ -лазер с длиной волны излучения 488 нм. Спектральное разрешение составляло 1.5 см $^{-1}$. Обработка спектров проводилась с использованием специальной компьютерной программы.

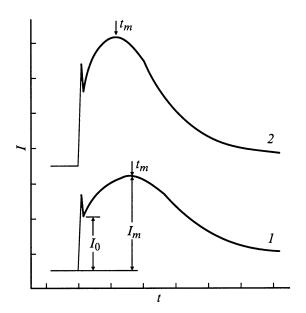
На рис. 2 представлены спектры комбинационного рассеяния света кристаллического GaAs и *por*-GaAs. Значения частот и ширин линий оптических мод кристаллического GaAs равны соответственно 292.3 и 4.1 см⁻¹ для LO-фонона и 269.0 и 4.5 см⁻¹ для TO-фонона. При переходе от кристаллического к пористому GaAs в спектрах наблюдается низкочастотный сдвиг и уширение обеих фононных линий. Наибольшие изменения обнаружены в спектре, полученном на стороне В образца 7 (кривая 4). Сдвиг для TO-моды составляет 2 см⁻¹, а ширина линии 5.1 см⁻¹, тогда как для LO-моды сдвиг равен 2.4 см⁻¹, при ширине линии 7 см⁻¹. Наряду с описанными выше изменениями происходит также перераспределение интенсивностей между TO- и LO-модами.

Рис. 2. Спектры комбинационного рассеяния света $z(yy)\bar{z}$: 1 — кристаллический GaAs; 2,4 — por-GaAs, сторона B, время травления 4 (2) и 6 мин (образец 7) (4); 3 — por-GaAs, сторона A, время травления 6 мин. $L \approx 15$ (2), 17 (3), 6—8 нм (4).

На основе сравнения наших данных с результатами, полученными в работе [9], можно предположить, что размер кристаллитов в исследуемых образцах находится в пределах от 5 до 20 нм. Для количественной оценки размеров кристаллитов использовалась модель фононного ограничения (confinement) [10]. В рамках этой модели и в предположении о сферической форме нанокристаллитов GaAs частотная зависимость интенсивности в комбинационном рассеянии света описывается следующей формулой:

$$I_s(\omega) = \int_0^1 \frac{dq \exp(-q^2 L^2/4) 4\pi q^2}{[\omega - \omega(q)]^2 + (G_0/2)^2},$$
 (3)

где q выражено в единицах $2\pi/a_0$, $a_0=5.65\,\mathrm{\AA}$ — постоянная решетки объемного GaAs, L — диаметр кристаллита, G_0 — ширина линии оптического фонона в кристаллическом GaAs. В качестве дисперсионного соотношения для продольного фонона нами использовалось выражение $\omega(q)=292.5-6.91q-43q^2$. На рис. 2 пунктирными линиями показаны результаты подгонки LO-моды. Полученный в результате расчета размер кристаллитов на стороне В образца 7 составил 6 нм. Эта величина близка к значению L=8 нм, полученному в рамках этой же модели при использовании в качестве дисперсионного закона выражения $\omega(q)=269.5+22.5\cos(q\pi)$


из работы [11]. Таким образом, обе оценки совпадают с величиной L, полученной для того же образца из данных $\Phi \Pi$.

2.4. Перенос носителей заряда

На образцах *por*-GaAs, полученных описанным выше методом, было проведено исследование дрейфовой подвижности носителей заряда. Образцы для измерений имели структуру типа "сэндвич". В качестве нижнего электрода служила пластина кристаллического GaAs. На слой пористого GaAs напылялся в вакууме полупрозрачный верхний электрод из алюминия. Сопротивление образцов в электрическом поле 10^3 B/см было $\sim 10^8$ Ом при площади верхнего электрода $S \approx (1-2) \cdot 10^{-2}$ см².

Для исследования дрейфовой подвижности использовался метод измерения времени пролета носителей заряда [12]. Измерения проводились в режиме сильной инжекции, при которой переходный фототок имел вид тока, ограниченного пространственным зарядом (ТОПЗ) [13].

Инжекция неравновесных носителей заряда в образец осуществлялась с помощью сильно поглощаемого излучения азотного лазера ЛГИ-21 с длиной волны 0.337 мкм и длительностью импульса ~ 8 нс. Исследовались импульсы фототока, соответствующие дрейфу электронов.

Рис. 3. Осциллограммы переходного фототока I(t), соответствующего дрейфу электронов в *por*-GaAs. Напряжение $V=5\ (I)$ и 6 В (2). Масштаб по оси $t-10\,\mathrm{Mkc/дел}$, по оси $I-2\,\mathrm{MkA/дел}$.

Дрейф дырок наблюдать практически было невозможно из-за малой величины сигнала.

Измерения переходных ТОПЗ проводилось при приложении к образцам импульсного напряжения длительностью $\sim 1\,\mathrm{mc}$ и при времени задержки $\sim 300\,\mathrm{mkc}$ между моментами подачи напряжения и фотоинжекции.

На рис. 3 приведены осциллограммы импульсов фототока, наблюдаемые при дрейфе электронов. Вид полученных осциллограмм переходного тока I(t) является типичным для ТОПЗ. Зависимость I(t) характеризуется начальным (I_0) и максимальным (I_m) токами. Величина тока практически не зависела от интенсивности инжектирующего излучения, при этом наблюдалась квадратичная зависимость токов I_0 и I_m от напряжения. Однако соотношение I_m/I_0 было меньше значения 2.7, характерного для идеального ТОПЗ, что, по-видимому, обусловлено недостаточно высоким уровнем инжекции.

Время t_m , соответствующее максимуму тока, изменялось обратно пропорционально приложенному к образцу напряжению V.

В условиях ТОПЗ значение дрейфовой подвижности носителей заряда (μ) можно определить как из времени пролета —

$$t_T = L_d^2/\mu V, (4)$$

которое связано с t_m соотношением $t_m = 0.8t_T$, так и из величины плотности начального тока [13] —

$$j_0 = I_0/S = \mu \varepsilon V^2 / 2.25 \cdot 10^{13} L_d^3, \tag{5}$$

где L_d — толщина слоя, ε — относительная диэлектрическая проницаемость. Поскольку точное значение толщины слоя, в котором происходит дрейф носителей

заряда, было неизвестно, система уравнений (4) и (5) использовалась для нахождения двух величин: L_d и μ . При этом полагалось, что в por-GaAs так же, как и в пористом Si [14], диэлектрическая проницаемость приблизительно в 2 раза меньше, чем в кристаллическом материале, т.е. $\varepsilon \approx 6$. Значения t_T и j_0 определялись из величин t_m и I_0 , установленных из экспериментальных кривых переходного ТОПЗ. В результате рашения системы уравнений (4) и (5) получены значения дрейфовой подвижности электронов $\mu \approx 4.0 \cdot 10^{-4} \, \mathrm{cm}^2/\mathrm{B} \cdot \mathrm{c}$ и толщины слоя, через который дрейфуют носители заряда, $L_d \approx 2.1 \, \mathrm{mkm}$.

Относительно небольшая величина L_d указывает на то, что более глубокая часть por-GaAs с более крупными порами имеет низкое сопротивление и, следовательно, приложенное к образцу напряжение падает в приповерхностном слое толщиной порядка 2.1 мкм. В этом высокомном слое, по-видимому, находятся нанокристаллиты, проявляющиеся в фотолюминесценции и комбинационном рассеянии.

Относительно значения μ , полученного для por-GaAs, необходимо заметить, что оно близко к значению дрейфовой подвижности носителей заряда в слоях пористого кремния (por-Si) с размерами структурных элементов 3.5-5 нм [15]. Этот факт может указывать на сходство структур por-GaAs и por-Si.

3. Заключение

Таким образом, разработана методика изготовления слоев пористого арсенида галлия на основе GaAs n-типа проводимости ориентации (111), A и В. Установлено, что спектр фотолюминесценции por-GaAs характеризуется основной полосой с максимумом при энергиях $E_A=1.82\,\mathrm{эB}$ и $E_B=1.88\,\mathrm{эB}$ соответственно для поверхностей A и В. Различие между этими значениями и шириной запрещенной зоны исходного материала составляет $\Delta E_A=0.40\,\mathrm{эB}$ и $\Delta E_B=0.46\,\mathrm{эB}$. Из величины сдвига максимума фотолюминесценции por-GaAs по отношению к максимуму фотолюминесценции GaAs оценен размер нанокристаллитов в por-GaAs, он оказался $\sim 6\,\mathrm{нm}$. При оценке размера нанокристаллитов из спектров комбинационного рассеяния была получена величина $6-8\,\mathrm{нm}$.

Установлено, что величина дрейфовой подвижности электронов в слоях por-GaAs составляет $\sim 4 \times 10^{-4} \, \mathrm{cm}^2/\mathrm{B} \cdot \mathrm{c}$. Полученное значение близко к величине подвижности носителей заряда в нанопористом кремнии, что свидетельствует о сходстве механизмов переноса в этих материалах.

Авторы выражают благодарность В.Ю. Давыдову и Н.И. Саблиной за помощь в работе.

Работа осуществлена при финансовой поддержке Программы "Физика твердотельных наноструктур" (гранты 97-1039, 99-1107).

Список литературы

- В.В. Мамутин, В.П. Улин, В.В. Третьяков, С.В. Иванов, С.Г. Конников, П.С. Копьев. Письма ЖТФ, 25 (1), 3, (1999).
- [2] А.А. Лебедев, Ю.В. Рудь. Письма ЖТФ, 22, 13 (1996).
- [3] Д.Н. Горячев, О.М. Сресели. ФТП, 31, 1383 (1997).
- [4] Ю.Н. Бузынин, С.А. Гусев, М.Н. Дроздов, Ю.Н. Дроздов, З.С. Красильник, А.В. Мурель, Д.Г. Ревин, В.И. Шашкин, И.Ю. Шулешова. *Тез. докл. 2-й Рос. конф. по физике полупроводников* (Зеленогорск, 1996) т. 2, с. 123.
- [5] Л.П. Сидорова, С.А. Гаврилов, А.В. Емельянов. *Тез. докл. Всерос. научно-техн. конф. "Микро- и наноэлектрони-ка"* (Звенигород, 1998) т. 2, РРЗ-33.
- [6] X.L. Zheng, W. Wang, H.C. Chen. Appl. Phys. Lett., 60 (8), 986 (1992).
- [7] A. Shimizu, Y. Yamada, G. Isutsu, K. Yano, M. Kasuga. Japan. J. Appl. Phys., 35, L276 (1996).
- [8] V.M. Asnin, N.S. Averkiev, A.B. Churilov, I.I. Markov, N.E. Mokrousov, A.Yu. Silov, V.I. Stepanov. Sol. St. Commun., 87, 817 (1993).
- [9] X.S. Zhao, Y.R. Ge, J. Schroder, P.D. Persans. Appl. Phys. Lett., 65, 2033 (1994).
- [10] R. Ashokan, K.P. Jain, H.S. Mavi, M. Balkanski. J. Appl. Phys., 60, 1985 (1986).
- [11] K.K. Tiong, P.M. Amrithraj, F.H. Pollak, D.E. Aspnes. Appl. Phys. Lett., 44, 122 (1984).
- [12] W.E. Spear. J. Non-Cryst. Sol., 1, 197 (1969) .
- [13] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973). [Пер. с англ.: М.А. Lampert, P. Mark. Current injection in solids (N.Y.-London, Academic Press, 1970)].
- [14] Л.П. Казакова, А.А. Лебедев, Э.А. Лебедев. ФТП, 31, 609 (1997).
- [15] E.A. Lebedev, E.A. Smorgonskaya, G. Polisski. Phys. Rev. B, 57 (3), 14607 (1998).

Редактор Л.В. Шаронова

Optical and electrical properties of porous gallium arsenide

N.S. Averkiev, L.P. Kazakova, E.A. Lebedev, Yu.V. Rud', A.N. Smirnov, N.N. Smirnova

Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract For the first time the photoluminescence, Raman shift and transport properties have been investigated in a porous GaAs. The samples of a porous GaAs were fabricated by an electrochemical method on n-type GaAs (111) (both A and B sides of the wafer) with the electron density $\sim 7 \cdot 10^{15} \, \mathrm{cm}^{-3}$. At room temperature the peaks of photoluminescence were observed near $E_A = 1.82 \, \mathrm{eV}$ from A side and near $E_B = 1.88 \, \mathrm{eV}$ from B side, respectively. The value of electron drift mobility has been determined as $\sim 4 \cdot 10^{-4} \, \mathrm{cm}^2/\mathrm{V} \cdot \mathrm{s}$. Estimation of the size of nanocrystallites in a porous GaAs both by the photoluminescence and the Raman shift gives approximately the same values $6-8 \, \mathrm{nm}$.