Фотоэлектрические явления в гетероструктурах a-Si: H/p-CulnSe₂

© Ю.А. Николаев, В.Ю. Рудь*, Ю.В. Рудь, Е.И. Теруков

Физико-технический институт им. А.Ф Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Санкт-Петербургский государственный технический университет,

195251 Санкт-Петербург, Россия

(Получена 29 декабря 1999 г. Принята к печати 29 декабря 1999 г.)

Осаждением пленок аморфного гидрированного кремния на поликристаллические подложки *p*-CuInSe₂ впервые получены фоточувствительные гетероструктуры *a*-Si:H/*p*-CuInSe₂. Исследованы фотоэлектрические свойства новой системы и сделан вывод о перспективах ее применения в разработках фотопреобразователей солнечного и линейно поляризованного излучений.

Развитие солнечной фотоэнергетики направлено в первую очередь на повышение эффективности и снижение себестоимости солнечных элементов [1-3]. Применение халькопиритных материалов CuInGaSe₂ в производстве тонкопленочных солнечных элементов признано одним из наиболее перспективных направлений в достижении этих задач [4]. В последние годы несколько исследовательских групп сообщили о достижении на халькопиритных материалах эффективности фотопреобразования выше 17% и более 10% — в случае изготовленных из них модулей [5-7]. Фотопреобразование в этих устройствах определяется, как правило, структурой ZnO/CdS/CuInGaSe₂/Мо/стекло. Однако в целях повышения эффективности производства и обеспечения охраны окружающей среды возникла необходимость замены буферных слоев CdS альтернативным материалом. В качестве таких материалов уже анализируются возможности различных полупроводников [8-10]. В настоящей работе при создании фоточувствительных гетероструктур (ГС) на основе объемных кристаллов *p*-CuInSe₂ в качестве буферного материала впервые изучены возможности высокоомных слоев аморфного гидрированного кремния *a*-Si:H.

1. В качестве подложек для осаждения пленок *a*-Si: H использовались электрически однородные поликристаллические пластины CuInSe₂ с концентрацией свободных дырок $p \simeq 3 \cdot 10^{17} \,\mathrm{cm}^{-3}$ при $T = 300 \,\mathrm{K}$. Средние размеры пластин были порядка 5 × 5 × 1 мм³. После механической полировки поверхность пластин подвергалась обработке в полирующем травителе. Осаждение пленок a-Si: Н проводилось методом высокочастотного тлеющего разряда на поверхность пластин CuInSe₂ при температуре 230°С. При выращивании пленок применялась газовая смесь SiH₄: H₂ (9:1). Использованный технологический режим обеспечивал получение пленок *a*-Si:H с толщиной ~ 1 мкм и зеркальной наружной поверхностью. Пленки a-Si: Н обнаружили хорошую адгезию по отношению к поверхности CuInSe₂. Темновое удельное сопротивление пленок *a*-Si: Н *n*-типа проводимости составляло $\sim 10^9$ Ом · см при T = 300 К.

2. Все полученные гетероструктуры *a*-Si: H/*p*-CuInSe₂ обладают четким выпрямлением. На вставке к рис. 1 представлена типичная для таких ГС стационарная

вольт-амперная характеристика. Пропускное направление, как правило, реализуется при положительной полярности внешнего смещения на подложке p-CuInSe₂. С увеличением напряжения прямого смещения $U \gtrsim 2$ В вольтамперная характеристика полученных гетероструктур обычно следует соотношению

$$I = (U - U_0)/R_0,$$
 (1)

где напряжение отсечки $U_0 \simeq 1.8-2 \,\mathrm{B}$, а остаточное сопротивление $R_0 \simeq 10^5 \,\mathrm{Om}$ при $T = 300 \,\mathrm{K}$. С учетом электрических свойств подложек можно полагать, что основной вклад в величину R_0 обеспечивается последовательным сопротивлением пленки *a*-Si: H. Обратный ток в исследованных структурах обычно подчиняется степенному закону $I \propto U^{\alpha}$, где $\alpha = 0.6-1$. Такое поведение в первую очередь может быть вызвано несовершенствами периферии полученных ГС.

При освещении гетероструктур a-Si: H/p-CuInSe₂ воспроизводимо обнаруживается фотовольтаический эффект. Знак фотонапряжения во всех таких ГС соответствует отрицательной полярности пленки a-Si: Н и оказывается независимым от энергии падающих фотонов $\hbar\omega$ и от локализации светового зонда на поверхности гетероструктур. Это позволяет отнести обнаруженный фотовольтаических эффект к разделению фотогенерированных пар единственной активной областью, возникающей в результате образования такой гетероструктуры. Фоточувствительность всех полученных гетероструктур доминирует при освещении со стороны их широкозонной компоненты a-Si: Н. Для лучших гетероструктур этого типа при освещении несфокусированным интегральным светом лампы накаливания ($L \simeq 100 \, \text{Br}$) фотонапряжение холостого хода $U_{\rm ir} = 0.3 \, {\rm B}$ и ток короткого замыкания $i_{sc} = 0.1$ мА. Максимальная вольтовая фоточувствительность таких структур $S_U = 150 \text{ B/Bt}$, а токовая $S_i = 25 \,\mathrm{mkA/Bt}$ при $T = 300 \,\mathrm{K}$. Очевидно, что приведенные параметры первых структур далеки от предельных возможностей данной системы и последующая оптимизация свойств ее компонент станет следующим этапом данного исследования.

3. На рис. 1 приведены типичные спектральные зависимости относительной квантовой эффективности фотопреобразования η , представляющей собой отношение

Рис. 1. Спектральные зависимости относительной квантовой эффективности фотопреобразования гетероструктур *a*-Si:H/ *p*-CuInSe₂ при T = 300 K (Образец 3, кривая 1 — освещение со стороны *a*-Si:H, 2 — со стороны *p*-CuInSe₂). На вставке — вольт-амперная характеристика (пропускное направление отвечает положительной полярности внешнего смещения на CuInSe₂).

фототока короткого замыкания к числу падающих фотонов, для одной из полученных ГС. Длинноволновый край зависимости $\eta(\hbar\omega)$ гетероструктур определяется фотоактивным поглощением в их узкозонной компоненте CuInSe₂ и при $\hbar\omega\lesssim 1$ эВ совпадает для двух разных геометрий их освещения (рис. 1, кривые 1 и 2). Максимум η в случае освещения ГС со стороны CuInSe₂ и ступенька при $\hbar \omega = 1.01$ эВ, которая возникает при освещении со стороны a-Si:H, совпадают с шириной запрещенной зоны Е_g тройного соединения [11,12]. Экспоненциальный рост фоточувствительности ГС при $\hbar\omega < 1$ эВ описывается высокой крутизной $S = \delta(\ln i_{\rm sc})/\delta(\hbar\omega) \simeq 30 \, {\rm s}{\rm B}^{-1}$, что соответствует прямым оптическим переходам в CuInSe₂ [11]. Поэтому, как только энергия фотонов становится $\hbar \omega > 1.01$ эВ, при освещении ГС со стороны подложки наступает резкий коротковолновый спад фоточувствительности, связанный с влиянием поглощения излучения в толще CuInSe₂, прилегающей к активной области ГС. Четко проявляющаяся при $\hbar \omega < 0.95 \, \mathrm{sB}$ в спектрах $\eta(\hbar\omega)$ исследованных ГС особенность с максимумом в области 0.9 эВ является характерной для исходных кристаллов и обусловлена фотоактивным поглощением с участием уровней дефектов в CuInSe₂ с энергетическим положением $E_v + 0.11$ эВ [11,13].

С переходом к освещению ГС со стороны пленок a-Si: Н спектры их фоточувствительности превращаются в широкополосные (рис. 1, кривая 1). Полная ширина полосы фоточувствительности на ее полувысоте $\delta_{1/2}$ при этом резко возрастает от 50 мэВ до значений 900-950 мэВ. В широкополосном режиме фоторегистрации в спектральной области высокой фоточувствительности можно выделить две полосы, энергетическое положение максимумов которых на рис. 1 (кривая 1) обозначено стрелками. Если связывать эти особенности с интерференцией падающего излучения в пленке a-Si:H, тогда оценка ее толщины на основании энергетического положения экстремумов в спектре $\eta(\hbar\omega)$ и показателя преломления a-Si: Н дает значение, соответствующее полученному из спектров оптического пропускания пленки, осажденной на стекле в том же технологическом процессе.

Следует отметить, что достижение широкополосного режима фоторегистрации в гетероструктурах *a*-Si:H/ *p*-CuInSe₂ может также свидетельствовать о том, что реальная граница между двумя материалами со столь различным строением (*a*-Si:H — аморфная, a CuInSe₂ — кристаллическая фазы) является достаточно совершенной, во всяком случае, в отношении процессов фоточувствительности. Локализация энергетического положения коротковолнового спада зависимости $\eta(\hbar\omega)$ в спектрах фоточувствительности гетероструктур *a*-Si:H/*p*-CuInSe₂ вблизи 2 эВ соответствует началу межзонного поглощения в *a*-Si:H и поэтому может быть приписана влиянию оптического поглощения в прилегающем к активной области ГС аморфному гидрированному кремнию.

4. В линейно поляризованном излучении (ЛПИ) исследованные ГС ведут себя как типичные изотропные вещества. Действительно, при освещении ГС вдоль нормали к приемной плоскости фототок короткого замыкания не обнаруживает какой-либо зависимости от положения вектора электрического поля Е световой волны. Следовательно, естественный фотоплеохроизм этих структур [14] во всей области фоточувствительности гетероструктур $P_N = 0$, что как раз и отражает изотропный характер фотоактивного поглощения аморфной пленкой *a*-Si:Н и поликристаллической подложкой CuInSe₂.

Как только угол падения ЛПИ на приемную плоскость *a*-Si: H полученных ГС становится отличным от нуля ($\theta > 0^\circ$), фототок начинает зависеть от азимутального угла φ между вектором **E** и плоскостью падения (ПП) линейно поляризованного излучения по закону

$$i_{\varphi} = i^{p} \cos^{2} \varphi + i^{s} \sin^{2} \varphi, \qquad (2)$$

где i^p и i^s — фототоки в поляризациях **Е** || ПП и **Е** \perp ПП соответственно. С ростом θ наблюдается увеличение поляризационного отношения i^p/i^s .

На рис. 2 приведены типичные зависимости i^p и i^s от угла падения ЛПИ при $\hbar\omega = \text{const}$ (кривые *I* и *2*). С учетом критериев поляризационной фотоэлектрической спектроскопии [15,16] наблюдаемый рост i^p и i^s с увеличением θ наряду с проявлением максимумов в зависимостях $i^p(\theta)$ и $i^s(\theta)$ указывает, с одной стороны, на высокое оптическое качество осажденных на CuInSe₂ пленок *a*-Si:H, а с другой — на интерференцию ЛПИ в этих пленках [15].

Угловые зависимости коэффициента наведенного фотоплеохроизма P_I гетероструктур a-Si:H/p-CuInSe₂ во всей области фоточувствительности характеризуются увеличением P_I с ростом угла падения по параболическому закону $\sqrt{P_I} \propto \theta$ (рис. 2, кривые 3, 4), причем для всех этих зависимостей при $\theta = 0$, $P_I = 0$. Последнее определяется изотропным характером фотоактивного поглощения. Из экспериментальных кривых $P_I = f(\theta)$ (рис. 2, кривая 3) следует, что только за счет увеличения угла падения фотопреобразование гетероструктур a-Si:H/p-CuInSe₂ может эксперссно переводиться от изотропного к поляризованному излучению, т. е. к поляризационночувствительному режиму.

10

/2, (%)^{1/2}

5

50

4

iP, *is*, arb. units

 $\lambda = 1.1$ мкм).

2

Рис. 2. Зависимости фототока короткого замыкания $(1 - i^p, 2 - i^s)$ и коэффициента наведенного фотоплеохроизма $(3 - P_I = f(\theta), 4 - P_I^{1/2} = f(\theta))$ от угла падения линейно поляризованного излучения на приемную плоскость *a*-Si:H гетероструктуры *a*-Si:H/*p*-CuInSe₂ при *T* = 300 K (Образец 6,

Физика и техника полупроводников, 2000, том 34, вып. 6

Рис. 3. Спектральная зависимость коэффициента наведенного фотоплеохроизма P_1 гетероструктуры *a*-Si:H/*p*-CuInSe₂ при T = 300 K (Образец 6, освещение со стороны *a*-Si:H, $\theta = 75^\circ$).

Типичная спектральная зависимость коэффициента наведенного фотоплеохроизма при $\theta \simeq 75^{\circ}$ и освещении со стороны пленки *a*-Si: Н для одной из ГС приведена на рис. 3. Из нее следует, что коэффициент P_I в таких ГС во всей области фоточувствительности осциллирует и остается на высоком уровне. Следовательно, при освещении ГС со стороны широкозонной компоненты эффект "окна для излучения" проявляется и в отношении поляризационной фоточувствительности. Сам факт проявления осцилляций P_I с учетом [15] может быть отнесен за счет проявления интерференции ЛПИ в "широкозонном окне" ГС. Оценка показателя преломления на основании коэффициента наведенного фотоплеохроизма дает величину, которая удовлетворительно согласуется с известным значением для *a*-Si: H.

Таким образом, в результате выполненных исследований установлено, что гетероструктуры на основе халькопиритных полупроводников типа CuInSe₂ и аморфного гидрированного кремния могут найти применение при разработке высокоэффективных безкадмиевых солнечных элементов, а также фотоанализаторов линейно поляризованного излучения.

Список литературы

- K. Takahashi, M. Kanagai. *Amorphous Silicon Solar Cells* (North Oxford Academic, London, 1986) p. 141.
- [2] B. Sang, K. Dairiki, A. Yamada, M. Kanagai. Jpn. J. Appl. Phys., 38, 4983 (1999).
- [3] B. Dimmler, H.W. Schock. Progr. Photovolt., 4, 425 (1996).
- [4] H.W. Schock. Appl. Surf. Sci., 92, 606 (1996).
- [5] J.R. Tuttle, J.S. Ward, A. Duda, T.A. Berens, M.A. Cotreras, K.R. Ramamnathan, A.L. Tennant, J. Keane, E.D. Cole, K. Emery, R. Noufi. Mater. Res. Soc. Symp. Proc., 426, 143 (1996).
- [6] T. Negami, M. Nishitani, N. Kohara, Y. Hashimoto, T. Wada. Mater. Res. Soc. Symp. Proc., 426, 1451 (1996).
- [7] H.S. Ullal, K. Zweibel, B. von Reodern. Proc 26th IEEE Photovoltaic Specialists Conf. (1997) p. 301.
- [8] Y. Ohtake, K. Kushiyama, M. Ishikawa, A. Yamada, M. Kanagai. Jpn. J. Appl. Phys., 34, 5949 (1995).

- [9] Y. Ohtake, S. Sutichai, A. Yamada, M. Kanagai. Jpn. J. Appl. Phys., 37, 3220 (1998).
- [10] S. Chaisitsak, T. Segiyama, A. Yamada, M. Kanagai. Jpn. J. Appl. Phys., 38, 4989 (1999).
- [11] T.J. Coutts, L.L. Kazmerski, S. Wagner. Copper Indium Diselenide for Photovoltaic Applicatons (Elsevier, Amsterdam, 1986).
- [12] Физико-химические свойства полупроводниковых веществ. Справочник (М., Наука, 1979).
- [13] Н.Н. Константинова, М.А. Магомедов, В.Ю. Рудь, Ю.В. Рудь. ФТП, 26, 558 (1992).
- [14] Ф.П. Кесаманлы, В.Ю. Рудь, Ю.В. Рудь. ФТП, **30**, 1921 (1996).
- [15] Ф.П. Кесаманлы, В.Ю. Рудь, Ю.В. Рудь. ФТП, **33**, 513 (1999).
- [16] V.Yu. Rud', Yu.V. Rud', H.W. Schock. Sol. St. Phenomena, 67–68, 421 (1999).

Редактор Т.А. Полянская

Photoelectrical phenomena in *a*-Si: H/*p*-CulnSe₂ heterostructures

Yu.A. Nikolaev, V.Yu. Rud'*, Yu.V. Rud', E.I. Terukov

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia * St. Petersburg State Technical University, 195251 St. Petersburg, Russia

Abstract The photosensitive *a*-Si: H/p-CuInSe₂ heterostructures have been first obtained by the deposition of hydrogenated amorphous silicon upon polycrystalline *p*-CuInSe₂ substrates. The photoelectrical properties of the new system were studied. The conclusion was drawn about prospects of these system application for solar and linear-polarization radiation photoconvertors.