Проводимость по локализованным состояниям в монокристалле твердого раствора TIGa_{0.5}Fe_{0.5}Se₂

© С.Н. Мустафаева, Э.М. Керимова, А.И. Джаббарлы

Институт физики Национальной академи наук Азербайджана, 1143 Баку, Азербайджан

(Поступила в Редакцию 5 мая 2004 г.)

Установлено, что в температурной области 128–178 К в слоистом монокристалле твердого раствора TlGa_{0.5}Fe_{0.5}Se₂ вдоль его естественных слоев в постоянном электрическом поле имеет место перескоковая проводимость с переменной длиной прыжка по локализованным вблизи уровня Ферми состояниям. Оценены плотность состояния $N_F = 2.8 \cdot 10^{17} \text{ eV}^{-1} \text{ cm}^{-3}$ в окрестности уровня Ферми, их разброс $\Delta E = 0.13 \text{ eV}$, среднее расстояние прыжков R = 233 Å и концентрация глубоких ловушек $N_t = 3.6 \cdot 10^{16} \text{ cm}^{-3}$.

Исследование слоистых соединений типа $TIMeX_2^6$ (M = In, Ga; X = S, Se) и твердых растворов на их основе представляет интерес для установления зависимостей электрических, фотоэлектрических и оптических свойств от состава и управления этими свойствами. Частичное замещение галлия в кристаллах TIGaSe₂ железом придает этим кристаллам магнитные свойства, которые могут быть полезными при разработке материалов, управляемых с помощью магнитного поля.

В [1,2] изучены транспортные свойства монокристалла TIGaSe₂ и поликристаллов TIFeSe₂ и установлено наличие в них перескоковой проводимости при низких температурах.

Цель настоящей работы — изучение проводимости по локализованным состояниям в монокристалле твердого раствора $TIGa_{0.5}Fe_{0.5}Se_2$ на постоянном токе и сравнение полученных результатов с данными для $TIGaSe_2$ и $TIFeSe_2$.

Поликристаллы TlGa_{0.5}Fe_{0.5}Se₂ были синтезированы сплавлением исходных высокочистых (не менее 99.99) элементов (Tl, Ga, Fe, Se) в вакуумированных до 10^{-3} Ра кварцевых ампулах, а их монокристаллы были выращены методом Бриджмена–Стокбаргера.

Образцы из TlGa_{0.5}Fe_{0.5}Se₂ для электрических измерений имели толщину d = 0.14 сm, а расстояние между контактами составляло l = 0.4 сm. Омические контакты к образцам создавались путем электролитического осаждения меди. Электрическая проводимость (σ) полученных образцов измерена в температурном диапазоне 128–303 К. Напряженность постоянного электрического поля, приложенного вдоль слоев кристалла, соответствовала омическому участку вольт-амперной характеристики.

На рис. 1 представлена температурная зависимость электропроводности монокристалла $TlGa_{0.5}Fe_{0.5}Se_2$. На зависимости $\lg \sigma$ от $10^3/T$ в области температур 178–303 К прослеживается экспоненциальный участок. При уменьшении температуры ниже 178 К наблюдается непрерывное уменьшение энергии активации проводимости. Температурная зависимость проводимости, характеризующаяся монотонно убывающей энергией активации, перестроена в координатах $\lg \sigma$ от $T^{-1/4}$ и представлена на врезке рис. 1. Видно, что все экспериментальные точки хорошо спрямляются в этих координатах. Это позволяет утверждать, что в указанной области температур (128–178 K) перенос заряда вдоль слоев монокристалла TlGa_{0.5}Fe_{0.5}Se₂ осуществляется посредством перескоковой проводимости по состояниям, лежащим в узкой полосе энергий вблизи уровня Ферми [3],

$$\sigma \sim \exp[-(T_0/T)^{1/4}].$$
 (1)

Наклон прямой $\lg \sigma$ от $T^{-1/4}$ составлял $T_0 = 1.7 \cdot 10^7$ К. По формуле [3]

$$N_F = \frac{16}{T_0 k a^3},$$
 (2)

где k — постоянная Больцмана, a — радиус локализации, мы определили плотность локализованных состояний вблизи уровня Ферми в кристаллах TIGa_{0.5}Fe_{0.5}Se₂: $N_F = 2.8 \cdot 10^{17} \text{ eV}^{-1} \text{ cm}^{-3}$. При этом для радиуса локализации взято значение a = 34 Å, полученное экспериментально в [4] для монокристалла GaSe.

По формуле [3]

$$R(T) = \frac{3}{8} a T_0^{1/4} T^{-1/4}$$
(3)

были оценены расстояния прыжков R носителей заряда при различных температурах. Так, при T = 128 К

Рис. 1. Температурная зависимость проводимости в монокристалле твердого раствора TIGa_{0.5}Fe_{0.5}Se₂.

Кристалл	Удельное сопротивление при 298 K, ρ , $\Omega \cdot$ cm	T_0, \mathbf{K}	N_F , eV ⁻¹ cm ⁻³	$R_{\rm av}$, Å	$\Delta E, eV$	N_t , cm ⁻³
TlGaSe ₂ TlGao 5 Feo 5 Sea	10^4 1.5 · 10 ⁴	$5.4\cdot10^5$ $1.7\cdot10^7$	$1.3 \cdot 10^{19}$ 2 8 \cdot 10^{17}	150 233	0.011	$1.4 \cdot 10^{17}$ 3.6 \cdot 10^{16}
TlFeSe ₂	25	$1.4 \cdot 10^{6}$	$3.3 \cdot 10^{18}$	104	0.13	$4.3 \cdot 10^{17}$

Параметры кристаллов TlGa_{1-x}Fe_xSe₂ (x = 0, 0.5 и 1.0)

R = 243 Å, а при T = 178 K R = 224 Å. Среднее расстояние прыжков в изученном интервале температур составляло 233 Å, что в ~ 7 раз превышает среднее расстояние между центрами локализации носителей заряда. Энергетически центры локализации разнесены на величину ΔE , которую можно оценить по формуле [3]

$$\Delta E = \frac{3}{2\pi R^3 N_F}.$$
(4)

Из (4) для разброса ловушечных состояний вблизи уровня Ферми было получено значение $\Delta E = 0.13$ eV. Концентрация глубоких ловушек в TlGa_{0.5}Fe_{0.5}Se₂, определенная по формуле

$$N_t = N_F \cdot \Delta E, \tag{5}$$

была равна $3.6 \cdot 10^{16} \, \text{cm}^{-3}$.

В таблице приведены для сравнения результаты изучения перескоковой проводимости вдоль слоев в TIGaSe₂ [1], TIGa_{0.5}Fe_{0.5}Se₂ и TIFeSe₂ [2]. Как видно из таблицы, в отличие от монокристаллов TIGaSe₂ составы TIGa_{0.5}Fe_{0.5}Se₂ и TIFeSe₂ характеризуются широкой полосой энергий (ΔE) в окрестности уровня Ферми, что приближает их по энергетической структуре к аморфным полупроводникам. Наиболее высокая концентрация глубоких ловушей (N_r) имеет место в поликристаллах

Рис. 2. Зависимость среднего расстояния прыжков в $TIGa_{1-x}Fe_xSe_2$ (x = 0, 0.5 и 1.0) от концентрации глубоких ловушек.

ТІГеSe₂, а в ТІGa_{0.5}Fe_{0.5}Se₂ N_t на порядок ниже. На этом фоне вполне закономерным экспериментальным фактом является то, что среднее расстояние прыжков в ТІGa_{0.5}Fe_{0.5}Se₂ значительно превышает R_{av} в ТІGaSe₂ (~ в 1.5 раза) и ТІГеSe₂ (~ в 2 раза). На рис. 2 построена зависимость среднего расстояния пряжков в ТІGa_{1-x}Fe_xSe₂ (x = 0, 0.5 и 1.0) от концентрации глубоких ловушек. Видно, что R_{av} линейно уменьшается с увеличением lg N_t .

Список литературы

- С.Н. Мустафаева, В.А. Алиев, М.М. Асадов. ФТТ 40, *1*, 48 (1998).
- [2] С.Н. Мустафаева, Э.М. Керимова, А.И. Джаббарлы. ФТТ 42, 12, 2132 (2000).
- [3] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1974).
- [4] С.Н. Мустафаева. Неорган. материалы 30, 5, 619 (1994).