О шнуровании холловского тока диска Корбино в условиях квантового эффекта Холла

© В.Б. Шикин, Ю.В. Шикина*

Институт физики твердого тела Российской академии наук, 142432 Черноголовка. Россия

* Институт проблем технологии микроэлектроники и особо чистых материалов Российской академии наук, 142432 Черноголовка, Россия

(Получена 8 июня 1999 г. Принята к печати 26 августа 1999 г.)

Предложена модификация теории вольт-амперной характеристики для экранированного диска Корбино с замагниченной, бесспиновой двумерной (2Д) электронной системой для факторов заполнения, близких к одному из целочисленных значений, и электрического тянущего поля с энергией, малой по сравнению с циклотронной энергией. Исследованы особенности вольт-амперной характеристики в предельных случаях "чистой" и "грязной" 2Д электронной системы. Приводится сравнение теории с экспериментом. Определены локальные характеристики диска с током: распределение 2Д электронной плотности, электрического и электрохимического потенциалов — доступные для измерений с помощью линейного электрооптического эффекта.

В интересной работе [1] исследован ряд специфических нелинейных эффектов в поведении вольт-амперной характеристики (ВАХ) для экранированного диска Корбино с бесспиновой, замагниченной двумерной (2Д) электронной системой и фактором заполнения, близким к одному из целочисленных значений. Речь идет о деталях зависимости разности потенциалов на краях диска Корбино с током от величины магнитного фактора заполнения, величина которого варьируется затворным напряжением экранированного диска Корбино.

Наряду с экспериментальными данными работа [1] содержит относительно простую и потому особенно привлекательную, количественную интерпретацию полученных результатов. Следует отметить, что, несмотря на обширную литературу о пробое квантового эффекта Холла (КЭХ), начиная с оригинального сообщения [2], количественное соответствие между различными проявлениями нелинейных эффектов в поведении ВАХ и их объяснением, как правило, оставляет желать лучшего (см., например, [2–9]). Поэтому в тех редких случаях, как, например, в работе [1], для которых теория в состоянии дать надежные заключения, ее мотивация должна быть по возможности строгой.

С этой точки зрения расчет, представленный в работе [1], содержит ряд допущений, законность которых в действительности, не очевидна. Обсуждение самосогласованной системы уравнений для определения ВАХ экранированного диска Корбино в условиях КЭХ составляет содержание данной работы. Предлагаемая теория обобщает результаты [1] на случай чистых 2Д систем, уточняет некоторые из утверждений [1] для грязного предельного случая и позволяет объяснить ряд наблюдаемых деталей в поведении ВАХ для замагниченного диска Корбино.

Система определений

1. Для описания своих результатов авторы [1] использовали локальный закон Ома в форме

$$J/2\pi r = -\sigma_{rr}(\varphi)d\varphi/dr,\tag{1}$$

где J есть полный радиальный ток Корбино, φ — локальная разность потенциалов между экранирующим затвором и 2Д электронным слоем в кремниевой МДП структуре, $\sigma_{rr}(\varphi)$ — диагональная часть проводимости 2Д системы, зависящая, вообще говоря, от потенциала φ . В случае заполнения, близкого к целочисленному, проводимость носит активационный характер, типичный для КЭХ (см. [1,10]):

$$\sigma_{rr} = \sigma_0 e^{\Delta/T} \cosh(\epsilon_F/T),$$
 (2)

причем энергия Ферми ϵ_F отсчитывается от середины между уровнями Ландау, а Δ есть энергия активации при нулевом значении ϵ_F , T — температура.

Учитывая определяющее значение выражения (2) для интересующих нас нелинейных процессов в диске Корбино, имеет смысл отметить еще результаты работы [11]. Считая основной причиной конечности диагональной проводимости плавный хаотический потенциал, авторы [11] пришли к следующему определению проводимости:

$$\sigma_{xx} = \frac{e^2}{\hbar} \exp[(\mu - V_c)/T] \int w(E) \exp(-E/T) dE/T. \quad (2a)$$

Здесь V_c — уровень протекания, w(E) — вероятность прохождения типичной седловой точки, выраженная в терминах характеристик хаотического потенциала, μ — электрохимический потенциал.

6* 211

Нетрудно видеть идентичность определений проводимости (2) и (2a), если полагать, что

$$\exp(-\Delta/T) \to \exp(-V_c/T), \quad \epsilon_F \to \mu,$$

$$\sigma_0 \to \frac{e^2}{\hbar} \int w(E) \exp(-E/T) dE/T,$$

и учесть симметризацию выражения для проводимости по отношению к электронным и дырочным возбуждениям, содержащуюся в определении проводимости (2).

Замыкает систему определений связь между ϵ_F и напряжением на затворе МДП структуры V_g , которую авторы [1] выбирают в виде

$$\varphi - V_g = p\epsilon_F, \qquad p = eD/C_0.$$
 (3)

Здесь D — плотность состояний в промежутке между уровнями Ландау, C_0 — емкость МДП структуры, нормированная на единицу площади. Простота соотношения (3) весьма относительна и возникает лишь в так называемом конденсаторном приближении (расстояние d между затвором и 2Д системой мало по сравнению с ее размерами), что с хорошей точностью имеет место в экспериментах [1].

Совместное решение системы (1)–(3) ведет к нелинейной связи меду J и V, где напряжение V вводится соотношением

$$V = \varphi(r_1) - \varphi(r_0), \tag{4}$$

хорошо объясняющей данные [1], особенно в области достаточно больших токов (понятие больших токов будет уточнено далее). Здесь r_0 , r_1 — границы 2Д системы в диске Корбино.

2. Заметим теперь, что в общем случае правая часть закона Ома (1) должна содержать не электрический, а электрохимический потенциал μ :

$$eJ/2\pi r = -\sigma_{rr}(\delta\mu)d\mu/dr. \tag{5}$$

Разница между (1) и (5) весьма существенна, так как вблизи целочисленных значений фактора заполнения $\nu=1,2,3,\ldots$ электрохимический потенциал в отличие от электропотенциала является нелинейной (а в некоторых случаях и сингулярной) функцией электронной плотности. Так, для идеальной, бесспиновой 2Д системы в нормальном к ее поверхности магнитном поле

$$\mu(r) = \hbar \omega_c / 2 + e \varphi(r) - T \ln S(\nu), \quad \nu < 2, \quad T > \Gamma, \quad (6)$$

$$S(H, \nu) = (1/2)(1/\nu - 1)$$

$$+ \sqrt{(1/4)(1/\nu - 1)^2 + \epsilon(2/\nu - 1)}, \quad (6a)$$

$$\nu(r) = \pi l_H^2 n(r), \quad n(r) = n_s + \delta n(r),$$

$$\epsilon = \exp(-\hbar \omega_c / T) \ll 1.$$

Здесь n(r) — локальное значение электронной плотности, n_s — ее среднее значение в отсутствие тока,

 l_H — магнитная длина, ω_c — циклотронная частота. Неравенство $T > \Gamma$, где Γ — дисперсия плотности состояний, необходимо для совмещения предположений об идеальности системы и конечности ее диагональной проводимости в магнитном поле.

В грязном предельном случае, когда $T \ll \Gamma$, сравнительно просто выглядит лишь связь между ν и μ (а не наоборот, как в работе (6)):

$$\nu = \phi(\delta\mu_1/\Gamma\sqrt{2}) + \phi(\delta\mu_2/\Gamma\sqrt{2}) + 1, \tag{7}$$

$$\delta\mu_1 = \mu - \hbar\omega_c/2 - e\varphi, \quad \delta\mu_2 = \mu - 3\hbar\omega_c/2 - e\varphi,$$

где $\phi(x)$ — функция ошибок, $\phi(-x) = -\phi(x)$. Очевидно, что определения (6), (7) не дают никаких общих аргументов, позволяющих говорить о законе Ома (1) вместо (5).

Второе предположение из работы [1], требующее дополнительных комментариев, связано с использованием вблизи целочисленных значений фактора заполнения выражения (2) для σ_{rr} . Прежде всего неясен смысл величины ϵ_F . С одной стороны, энергия Ферми, определяющая показатель гиперболического косинуса из выражения (2), в неоднородных условиях эквивалентна электрохимическому потенциалу $\delta\mu(r)$. Об этом свидетельствует и полученное авторами [11] определение проводимости (2а). Такой подход к проводимости будет называться в дальнейшем μ -представлением. С другой стороны, μ -представление ведет, с нашей точки зрения, к нефизичным результатам для ВАХ, что заставляет искать альтернативные возможности, изложенные далее.

Следующий, на первый взгляд, технический вопрос, касающийся явного вида связи между ϵ_F и $\varphi(r)$, также нуждается в специальном обсуждении. Как будет видно из дальнейшего, универсальное использование разложения (3) вдоль всего диска Корбино может заметно искажать структуру ВАХ.

3. Приступая к анализу уточнений к определениям (1)–(3), остановимся сначала на возможностях μ -представления, т. е. будем полагать, что закон Ома определен формулой (5), а проводимость (2) понимается в смысле

$$\sigma_{rr} = \sigma_0 e^{-\Delta/T} \cosh(\delta \mu/T). \tag{8}$$

Кроме того, граничные условия (4) также переписываются с заменой $\varphi \to \mu.$

Нетрудно видеть, что комбинация выражений (5), (8) сводит задачу о ВАХ к одному уравнению для $\delta\mu$. К тому же отпадает необходимость использовать дискуссионное разложение (3), что дополнительно засчитывается в актив μ -представления. Влияние на ВАХ затворного напряжения, входящего в разложение (3), можно учесть, полагая, как и в [1], что в отсутствие тока J величина $\delta\mu$ однородна вдоль диска Корбино и имеет значение

$$\delta\mu(J=0) = \delta\mu_0, \quad \delta\mu_0 \propto V_{\sigma}.$$
 (9)

Учитывая сказанное, записываем решение уравнений (5), (8) для $\delta\mu$ с граничными условиями, учитывающими

замену $\varphi \to \mu$, в виде

$$\delta\mu(r_0)/\hbar\omega_c = \delta\mu_0, \qquad \delta\mu(r_1)/\hbar\omega_c = \delta\mu_0 + \upsilon,$$

$$\upsilon = eV/\hbar\omega_c. \tag{10}$$

Здесь и далее все энергетические характеристики отнесены к циклотронной энергии. В результате получаем

$$\delta\mu(x) = t \operatorname{Arsh}\left[\operatorname{sh}\left(\frac{\delta\mu_0}{t}\right)\left(1 - \frac{\ln x}{\ln q}\right) + \operatorname{sh}\left(\frac{\delta\mu_0 + \upsilon}{t}\right)\frac{\ln x}{\ln q}\right], \ q = r_1/r_0, \ x = r/r_0.$$
 (11)

Связь между током J и напряжением V выглядит так:

$$j/t = \left[\operatorname{sh} \frac{\delta \mu_0 + \upsilon}{t} - \operatorname{sh} \frac{\delta \mu_0}{t} \right],$$

$$j = \frac{eJ \ln q}{2\pi\sigma_0 \hbar \omega_c} \exp \frac{\Delta}{T}.$$
(12)

Из выражения (11) следует, что с ростом v пространственное распределение $\delta\mu$ вдоль направления тока становится существенно нелинейным. При этом степень нелинейности определяется отношением eV/T, а не параметром $eV/\hbar\omega_c$, как это можно было бы предполагать интуитивно. Для примера на рис. 1–3 представлены расчетные зависимости $\delta\mu(x)$ для разных начальных значений $\delta\mu_0$, реакция $\delta\mu(x)$ на изменение v при фиксированном t, а также распределение $\delta\mu(x)$ при заданных $\delta\mu_0$, v и разных t.

Свойства решения (11), (12), а также данные рис. 1–3 указывают на появление с ростом υ неоднородного распределения $\delta\mu(x)$, ведущего к локализации размеров целочисленной области, т. е. шнурованию холловского тока

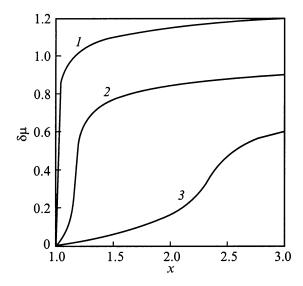


Рис. 1. Распределение величины $\delta\mu$, нормированной на $\hbar\omega_c$, вдоль направления тока $x=r/r_0$ при фиксированных значениях $\nu_0=0.8,\,t=0.1,\,q=3$ и величинах $\upsilon:\,1-0.6,\,2-0.8,\,3-1.2.$ (ν_0 — фактор заполнения в отсутствие тока).

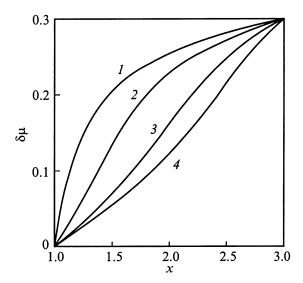


Рис. 2. То же, что и на рис. 1, но при фиксированных значениях $v=0.5,\,t=0.1,\,q=3$ и величинах ν_0 : $I=1.00,\,2=0.98,\,3=0.96,\,4=0.94.$

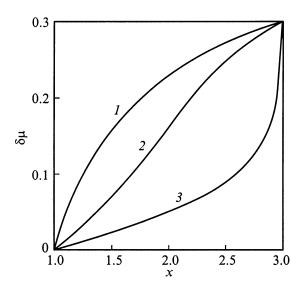


Рис. 3. То же, что и на рис. 1, но при фиксированных значениях $v=0.3,\ \nu_0=0.96,\ q=3$ и величинах t: $I=0.2,\ 2=0.1,\ 3=0.05$.

в диске Корбино. Такое поведение $\delta \mu(x)$ не удивительно в связи с экспоненциальной зависимостью $\sigma_{xx}(\delta \mu)$.

Наряду с качественно понятными свойствами формул (11), (12) налицо парадокс, не имеющий решения в рамках μ -представления. Дело в том, что определения (11), (12) не зависят от деталей электронного спектра в циклотронной щели. Такая универсальность является скорее недостатком, чем достоинством μ -представления, ибо практика исследования пробоя КЭХ [1–9] свидетельствует о его чувствительности к деталям электронной плотности состояний между уровнями Ландау.

На наш взгляд, парадокс с определением (8) и последующими результатами (11), (12) заключается в том, что

эти формулы, правильно отражая экспоненциальную чувствительность проводимости к положению электрохимического потенциала, не берут во внимание возможное участие в формировании величины σ_{rr} электрического потенциала φ . Его наличие может изменять относительное положение уровней Ландау и электрохимического потенциала, а значит, и влиять на структуру выражений (2), (2a). Учитывая сказанное, естественно использовать, наряду с μ -представлением (8), альтернативное, названное нами для определенности ζ -представлением, феноменологическое определение проводимости

$$\sigma_{rr} = \sigma_0 e^{-\Delta/T} \cosh\left[(\zeta - \hbar\omega_c)/T\right], \quad \zeta = \mu - e\varphi. \quad (13)$$

Это выражение принимает во внимание как пространственную неоднородность $\mu(x)$, так и возможную координатную зависимость $\varphi(x)$. Определение (13) записано специально для фактора заполнения, близкого к единице. Как будет показано далее, альтернатива (13) помогает избежать парадоксов в поведении $\delta\mu$, отмеченных выше.

Появление в (13) комбинации потенциалов μ и φ

$$\zeta = \mu - e\varphi$$

усложняет задачу, "закрывая" возможность ее универсального решения вида (11), (12). С другой стороны, используя, например, соотношение (6), можно придать выражению (13) физически прозрачный вид

$$\sigma_{rr} = \sigma_0 e^{-\Delta/T} \cosh \left[\frac{-\hbar \omega_c / 2 - T \ln S(\nu)}{T} \right].$$
 (14)

При $\nu=1$, т.е. в области с целочисленным значением фактора заполенения, аргумент гиперболического синуса в правой части (11) обращается в 0, а значит, проводимость имеет минимальное значение. Известно к тому же [12–14], что в неоднородных условиях 2Д замагниченная система обладает свойством сохранять размеры целочисленного канала в некотором интервале внешних параметров, причем четкость определения размеров канала растет с уменьшением температуры. Это свойство отсутствует в μ -представлении (8) и четко выражено в ζ -представлении проводимости (13).

4. Для полноты системы (5), (6), (13) или (5), (7), (13) необходима дополнительная, независимая связь между электрическим потенциалом φ и локальной плотностью 2Д системы. Искомое соотношение имеет электростатическое происхождение и в общем случае требует совместного определения плотности зарядов вдоль 2Д системы и экранирующего электрода. И в этой части имеются возможности для количественного уточнения существующих определений. Однако, претендуя в дальнейшем лишь на качественные утверждения, мы придерживаемся, как и в [1], популярного конденсаторного приближения, когда обеспечена малость расстояния 2d между 2Д системой и затвором по сравнению с $r_1 - r_0$:

$$2d \ll r_1 - r_0. \tag{15}$$

В этом случае

$$\varphi(r) \simeq 2ed[\nu(r) - \nu_0]/\kappa l_H^2,$$
 (16)

где $\nu(r)$ — локальное значение фактора заполнения, ν_0 — его величина в отсутствие тока, κ — диэлектрическая постоянная.

Таким образом, полная система уравнений на определение величин в ζ -представлении, μ , φ , ζ , ν , состоит из формул (5), (6), (13), (16) или (5), (7), (13) и (16). Конечной целью теории является вычисление связи между J и V, а также нахождение локального распределения электропотенциала вдоль диска Корбино — величины, доступной для измерений с использованием линейного электрооптического эффекта [13].

5. Собирая вместе определения (5), (6), (14), (16), сформулируем уравнение на $\nu(r)$ для идеальной 2Д системы

$$\frac{j}{\ln q} \int_{1}^{x} \frac{dx}{x \cosh\left\{-1/2t - \ln S[\nu(x)]\right\}}$$

$$= 2d_{*}(\nu - \nu_{0}) - t \ln\left[S(\nu)/S(\nu_{0})\right], \quad (17)$$

$$1 > t > \gamma, \qquad \gamma = \Gamma/\hbar\omega_{c} \ll 1,$$

где $S(\nu)$ определяется из (6a). Требования $1>t>\gamma$ необходимы для гарантии нахождения 2Д системы в окрестности основного состояния и конечности диагональной проводимости, безразмерный параметр j из (12) изменяется в рамках применимости данной теории от нуля до значений, несколько превышающих единицу,

$$0 \le j < 2, \tag{17a}$$

и связь между током J и V имеет вид

$$\frac{j}{\ln q} \int_{1}^{q} \frac{dx}{x \cosh\{-1/2t - \ln S[\nu(x)]\}} = \nu,$$

$$q = r_1/r_0 > 1. \tag{18}$$

Соответствующие уравнения для грязного случая не могут быть представлены в форме, аналогичной (17). Далее мы обсудим структуру определений ВАХ в применении к экспериментальной ситуации [1].

Вольт-амперная характеристика в разных приближениях

1. Несколько утверждений относительно ВАХ образца с идеальным 2Д электронным газом. Согласно (17), в области низких температур $\gamma < t < 1$ распределение электронной плотности вдоль диска Корбино при наличии радиального тока j в существенной мере определяется игрой двух параметров: υ и υ_0 .

1а. Наиболее интересен случай $\nu_0=0$, когда доминирующая роль в определении электрохимического потенциала (6) принадлежит энтропийному члену. В результате электронный ток является в основном диффузионным, электропотенциал практически не изменяется вдоль диска Корбино (факт, доступный для проверки методами из работы [13]), а ВАХ имеет структуру (12) с $\delta\mu_0=0$.

16. В случае $\nu_0 \neq 0$ поведение ВАХ зависит, в частности, от знака $(1-\nu_0)$. В положительной области сопротивление образца нелинейно растет с ростом υ (дело в том, что появление тока возмущает электронную плотность 2Д системы и, если $(1-\nu_0)>0$, это возмущение приближает 2Д систему к состоянию с $\upsilon(x)=0$ на какой-либо параллели диска Корбино; естественно, что эффективное сопротивление при этом растет). В случае $(1-\nu_0)<0$ те же качественные соображения позволяют ожидать нелинейного уменьшения сопротивления диска. Пусть например,

$$v \le 2d_*(1 - \nu_0) \le 1 \tag{19}$$

и величина $\nu(x)$ плавно растет от своего начального значения ν_0 до максимальной величины $\nu(q)<1$ на внешнем краю диска Корбино. Для расчета ВАХ обращаемся к (17), (18) с двумя упрощениями. Во-первых, полагаем приближенно

$$-1/2 - t \ln S(\nu) \simeq \delta \zeta_1^* + (D_1^*)^{-1} \nu_1' x,$$

$$\nu_1' \equiv d\nu(1)/dx, \quad \zeta^* = \zeta/\hbar \omega_c, \qquad (20)$$

$$\delta \zeta_1^* = -1/2 - t \ln S(\nu_1) < 0,$$

$$(D_1^*)^{-1} = \frac{d\zeta^*}{d\nu} \bigg|_{\nu = \nu_0} = -\frac{t}{S(\nu_0)} \frac{dS(\nu_0)}{d\nu} > 0.$$

Выражения для $\delta\zeta_1^*$ и $(D_1^*)^{-1}$ отвечают идеальной 2Д системе. А неизвестная производная $d\nu(1)/dx$, входящая в разложение (20), вычисляется с помощью (17)

$$j/\cosh\left[\frac{(D_1^*)^{-1}\nu_1' + \delta\zeta_1^*}{t}\right] = \left[2d_* + (D_1^*)^{-1}\right]\nu_1'. \quad (21)$$

Во-вторых, естественно допустить, что разложение (20) "работает" на всем интервале $1 \le x \le q$. В этом случае формула (18) с учетом (20) принимает вид

$$\frac{2j}{b \ln a} \left\{ \operatorname{arctg} \left[\exp(a + bq) \right] - \operatorname{arctg} \left[\exp(a + b) \right] \right\} = v, \quad (22)$$

$$a = \delta \zeta_1^*, \quad b = (D_1^*)^{-1} v_1'$$

и $v_1' \propto j$ из (21).

Как и ожидалось, эффективная перенормировка сопротивления, представленная в (22) фигурной скобкой, растет при увеличении j.

1в. С ростом v в область

$$2d_*(1-\nu_0) < \nu < 1, \tag{23}$$

где $d_*=d/r_0$, возникает один излом на зависимости $\nu(x)$. Точка излома x_\wedge разделяет области с конечным градиентом электронной плотности и ее целочисленным плато. Далее, если

$$2d_*(1 - \nu_0) < 1 \le v, \tag{24}$$

появляются два излома профиля электронной плотности в точках x_{\wedge} и x_{\vee} . Между ними формируется целочисленный канал шириной 2a, где

$$2a = x_{\wedge} - x_{\vee}$$

и т.д. Можно показать, что

$$2a = tD_{\min}^* / \nu_{\min}' = 2/\pi j,$$
 (24a)

где D_{\min}^* — минимальная плотность состояний в промежутке между уровнями Ландау. Но в целом надежное определение ВАХ и других деталей поведения 2Д системы в режимах (23), (24) требует численных расчетов и в данной работе не обсуждается.

2. Перейдем к случаю неидеальных (грязных) 2Д систем, актуальному с точки зрения экспериментов [1]. В этом пределе, как отмечалось выше, не удается записать в замкнутом виде уравнение для $\nu(r)$, аналогичное (17). Однако можно продвинуться в описании свойств "грязного" диска Корбино, пользуясь разложениями вида (20). При этом сохраняются преемственность между "чистыми" и "грязными" определениями, если вместо (20) для D_1^* и ζ_1^* использовать величины

$$(D_1^*)^{-1} = \frac{d\zeta^*}{d\nu} > 0, \quad \delta\zeta_1^* = \zeta^*[\nu(0)].$$
 (25)

Производная $d\zeta/d\nu$ вычисляется с помощью (7):

$$\begin{split} \frac{d\nu}{d\zeta} &= \sqrt{\frac{2}{\pi}} \bigg\{ \exp\bigg[\frac{-(\zeta - \frac{1}{2}\hbar\omega_c)^2}{2\Gamma^2} \bigg] \\ &+ \exp\bigg[\frac{-(\zeta - \frac{3}{2}\hbar\omega_c)^2}{2\Gamma^2} \bigg] \bigg\} / \Gamma. \end{split}$$

Эта производная минимальна в точке

$$\zeta_{\min} = \hbar \omega_c, \quad \left(\frac{d \nu}{d \zeta} \right) \bigg|_{\min} = \frac{2}{\Gamma} \sqrt{\frac{2}{\pi}} \exp \left[-\frac{\left(\frac{1}{2} \hbar \omega_c \right)^2}{2 \Gamma^2} \right].$$

В этом месте величина ν из (7) точно равна 1, ибо $\delta\mu_1=-\hbar\omega_c/2$ и $\delta\mu_2=+\hbar\omega_c/2$, а также $\phi(-x)=-\phi(x)$.

Таким образом, поведение грязной 2Д системы качественно аналогично чистому случаю, если в различных "идеальных" предсказаниях роль температуры играет параметр Γ .

Использование разложений вида (20) позволяет разобраться и в приближениях, использованных в работе [1]. Как явствует из предшествующих результатов, вне целочисленного канала с хорошей точностью справедливо равенство

$$\mu(x) \simeq e\varphi(x).$$
 (26)

При этом правая часть выражения (5) совпадает с (1). Допустим также, как и в (20), что

$$\delta \zeta^*(x) \simeq \delta \zeta_1^* + (D_1^*)^{-1} \delta \nu. \tag{27}$$

Кроме того, вслед за (16) запишем

$$\delta \nu = \kappa l_H^2 \varphi(x)/2ed.$$

С учетом (27), (16) выражение для проводимости (13) в ζ -представлении приобретает характерные черты проводимости из соотношений (2), (3), если полагать

$$\delta \zeta \equiv \zeta(1) = -V_g/p, \ \ (D_1^*)^{-1} \kappa l_H^2/2ed = 1/p.$$
 (28)

Вспоминая определения p из (3) и D_1^* из (20), нетрудно видеть, что разница между соотношениями (3) и (28) заключается лишь в том, что формула (3) предполагает использование минимальной плотности состояний D_{\min}^* . Соотношение же (28) содержит эту плотность D_1^* на внутреннем краю диска Корбино.

Учитывая сказанное, приведем 2 выражения для ВАХ грязной 2Д системы в диске Корбино.

Одно из них воспроизводит вычисления [1]:

$$j = \frac{t}{\lambda} \left[\operatorname{sh} \frac{\lambda (\delta \mu_0 + \upsilon)}{t} - \operatorname{sh} \frac{\lambda \delta \mu_0}{t} \right],$$

$$j = \frac{eJ \ln q}{2\pi\sigma_0\hbar\omega_c} \exp\frac{\Delta}{T}, \quad \lambda = \frac{\kappa l_H^2}{2e^2dD_1^*} \ll 1.$$
 (29)

Формула (29) получена с использованием разложения (27) (или (3)) на всем интервале $r_0 < r < r_1$. Интересны условия омичности ВАХ (29). Линейный режим имеет место, если

$$\lambda v/t \ll 1.$$
 (30)

В случае $\lambda \ll 1$ омические условия существенно мягче, чем просто неравенство $\upsilon \ll t$, имеющее место в μ -представлении.

Второе из определений ВАХ построено в предположении, что линейное разложение (27) имеет ограниченную область применимости, и с ростом параметра $\lambda v/t$ становятся заметными вклады следующих членов разложения в этом ряду. Ограничиваясь двумя членами этого ряда и полагая $\delta \mu_0 = 0$, имеем

$$j = \int_0^v \cosh\left(\frac{\lambda}{t}\varphi - \frac{\eta}{t}\varphi^2\right) d\varphi. \tag{31}$$

Определение (31) содержит две подгоночные константы λ и η , характеризующие в конечном итоге минимальную

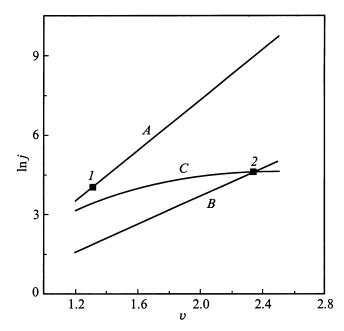


Рис. 4. Примеры вольт-амперных характеристик для "грязной" 2Д системы диска Корбино, иллюстрирующие определения (29), (31). *I*, 2 — экспериментальные точки, линии A–C — расчет: A — (29), λ = λ_1 = 0.12, B — (29), λ = λ_2 = 0.067, C — (31), λ = λ^* = 0.16, η = 0.05.

плотность состояний и первые поправки к ней при удалении от окрестности перевала.

Конечной целью манипуляций с выражениями для ВАХ (29), (31) является их сравнение с экспериментом [1]. При этом среди имеющихся данных приходится использовать лишь две точки, расположенные в окрестности $\nu \le 2$ (большинству из результатов [1] отвечают значения $\nu > 2$, для которых наши расчеты непригодны). На рис. 4 представлена информация о соответствии формул (29), (31) данным [1]. На рис. 4 безразмерное значение υ определяется отношением eV к циклотронной энергии для $H=10.6\,\mathrm{Tr}$ и эффективной массы $m^* = 0.19 m_e$. В результате $\hbar \omega_c = 5.25 \, \text{мэВ}$. Безразмерная комбинация j содержит числа: k = 7, $\Delta = 30 \,\mathrm{K}, \, \sigma_0 = 1.7 \cdot 10^{-6} \,\mathrm{Om}^{-1}, \, q = 3.$ Для ориентации безразмерные координаты двух экспериментальных (1,2) и максимальной (см. [1]) точек на плоскости (v,j)таковы:

$$\upsilon_1 = 1.32, \quad j_1 = 50; \quad \upsilon_2 = 2.33, \quad j_2 = 99;$$

 $\upsilon_{\text{max}} = 8.7 \quad j_{\text{max}} = 4090.$ (32)

Линия A отвечает выражению (29) с $\delta\mu_0=0$ и константой $\lambda=\lambda_1$, подобранной из условия, что эта линия должна содержать точку (υ_1,j_1) . В результате получаем

$$\lambda = \lambda_1 = 0.12. \tag{33}$$

Линия B аналогична линии A, но должна проходить через точку (υ_2,j_2) . В результате находим

$$\lambda = \lambda_2 = 0.067. \tag{33a}$$

Аналогичная процедура для точки $(v_{\text{max}}, j_{\text{max}})$ дает

$$\lambda = \lambda_{\min} = 0.026. \tag{336}$$

Линия C построена в соответствии с выражением для ВАХ (31), чтобы оптимально располагаться по отношению к экспериментальным точкам I, 2. В результате получаем

$$\lambda = \lambda^* = 0.16, \quad \eta = 0.05.$$
 (34)

Анализ результатов сопоставления экспериментальных данных и расчета, представленных на рис. 4, указывает на сравнительно "невысокое качество" 2Д электронного газа в образце из работы [1] и разумность его описания в "грязных" терминах. При оценке эффективной минимальной плотности состояний авторы [1] ориентировались на цифры (336). Этому значению λ_{\min} отвечает минимальная плотность состояний

$$D/D_0 = 6.6 \cdot 10^{-2}$$
.

Если же обращаться к цифрам (33), (33a) для точек 1, 2, то минимальная плотность состояний еще увеличивается.

Очевидно также, что линейное разложение (20), использованное для построения ВАХ (29), не очень эффективно в области $\lambda v/t > 1$. Об этом свидетельствует разброс констант (33)–(336) и относительный успех формулы (31).

Обсуждение результатов

Подведем некоторые итоги. В работе исследованы слабо нелинейные вольт-амперные эффекты для электронной 2Д системы в конфигурации диска Корбино с магнитным полем, нормальным к поверхности диска, и условиях, отвечающих возникновению КЭХ. Исходной предпосылкой для развития слабых нелинейностей ВАХ является потеря 2Д системой с током пространственной однородности, даже если в равновесии эта система являлась идеально однородной. Аномальное развитие токовых неоднородностей в режиме КЭХ на фоне линейного или логарифмического роста электронной плотности, имеющих место в любой 2Д системе с током, осуществляется по двум каналам. Один из них специфичен для 2Д систем с фактором заполнения, близким к целочисленному. Он присутствует и в равновесных условиях, создавая в неоднородных системах "целочисленные" полоски. Наличие тока модифицирует параметры таких полосок, либо приводит к условиям, необходимым для их возникновения. Другой канал — шнурование тока качественно одинаков в любых проводящих системах с нелинейной зависимостью проводимости от параметров задачи (см. [15]). Его наличие для диска Корбино с током в режиме КЭХ, впервые отмеченное авторами [1], иллюстрируется рис. 1–3, следующими из теории ВАХ в μ -представлении.

В действительности, однако, оба канала неоднородности взаимосвязаны. Как показано, выше, в центре каждого холловского шнура находится целочисленная полка электронной плотности, являющаяся ядром области с минимальной проводимостью.

Размеры полки зависят от величины пропускаемого тока, и в некоторых предельных случаях могут быть определены аналитически (см. (24a)). Наблюдение таких полок возможно с помощью линейного электрооптического эффекта [16].

Целочисленные каналы хорошо определены в чистых системах и в омическом (квазиомическом) режимах. Шнурование холловского тока сохраняется до очень больших значений $\upsilon\gg 1$, хотя теория такого шнурования должна модифицироваться в сторону других возможных нелинейностей BAX (перегрев электронной системы и т.д.).

Авторы благодарны В.Т. Долгополову за обсуждение результатов работы.

Работа частично финансирована РФФИ (грант 98-02-16640) и программой "Физика твердотельных наноструктур" (грант 99-1126).

Список литературы

- А.А. Шашкин, В.Т. Долгополов, С.И. Дорожкин. ЖЭТФ, 91, 1897 (1986).
- [2] G. Ebert, K. von Klitzing, K. Ploog, G. Weimann. J. Phys. C, 16, 5441 (1983).
- [3] M.E. Cage, R.F. Dziuba, B.F. Field, E.R. Williams, S.M. Girvin, A.C. Gosserd, D.C. Tsai, R.J. Wagner. Phys. Rev. Lett., 51, 1374 (1983).
- [4] O. Heinonen, P. Taylor, S. Girvin. Phys. Rev. B, 30, 3016 (1984).
- [5] P. Streda, K. von Klitzing. J. Phys. C, 17, 483 (1984).
- [6] S. Komiyama, T. Takkumasu, S. Hiamizu, S. Sasa. Sol. St. Commun., 54, 479 (1985).
- [7] Ch. Cimon, B.B. Goldberg, F. Fang, M. Thomas, S. Wright. Phys. Rev. B, 33, 1190 (1986).
- [8] S. Kawaji, K. Hirakawa, M. Nagata. Physica B, 184, 17 (1993).
- [9] N.Q. Balaban, U. Meirav, H. Shtrikman, Y. Levinson. Phys. Rev. B, 26, 3648 (1983).
- [10] М.Г. Гаврилов, И.В. Кукушкин. Письма ЖЭТФ, 43, 79 (1986).
- [11] С.В. Иорданский, Б.А. Музыкантский. ЖЭТФ, 103, 2116 (1993).
- [12] D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman. Phys. Rev. B, 46, 4026 (1992).
- [13] D.B. Chklovskii, K.F. Matveev, B.I. Shklovskii. Phys. Rev. B, 47, 12 605 (1993).
- [14] D. Chklovskii, P. Lee. Phys. Rev. B, 48, 18 060 (1993).
- [15] В.Л. Бонч–Бруевич, С.Г. Калашников. Физика полупроводников (М., Наука, 1977).
- [16] W. Dietsche, K. von Klitzing, K. Ploog. Surf. Sci., 361, 289 (1996).

Редактор Т.А. Полянская

On the formation of Hall current streamer in the Corbino disc under Hall's quantum effect

V.B. Shickin, Yu.V. Shickina*

Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia * Institute for Problems of Technology of Microelectronics and Highly Pure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Russia