О фазовом переходе во включениях в кристаллах CsH₂AsO₄, KD₂PO₄ и KH₂PO₄

© С.А. Гриднев, С.А. Кравченко

Воронежский государственный технический университет, 394026 Воронеж, Россия

E-mail: gridnev@nsl.vstu.ac.ru

(Поступила в Редакцию 18 апреля 2000 г.)

Методом обращенного крутильного маятника изучены низкочастотное внутрее трение Q^{-1} и модуль сдвига *G* в параэлектрической фазе сегнетоэлектриков CsH₂AsO₄, KD₂PO₄ и KH₂PO₄. На зависимостях $Q^{-1}(T)$ и G(T) выше точек Кюри этих кристаллов обнаружены аномалии при температурах 308, 253 и 293 К соответственно, которые связываются с фазовым переходом 1-го рода ($\bar{4}2m \rightarrow mm^2$), происходящим во включениях другой фазы.

Работа выполнена при финансовой поддержке РФФИ (грант № 98-02-16055).

В кристаллах семейства КH₂PO₄ многими исследователями обнаружены выше точки Кюри (Т_С) аномалии различных физических свойств (электропроводности, диэлектрических, акустических, тепловых, оптических и др. свойств), расположенные, как правило, при температурах вблизи термического разложения кристаллов [1-4]. Наличие аномалий интерпретировалось либо как следствие высокотемпературных структурных фазовых переходов в твердой фазе, связанных с вращением групп H₂PO₄ вокруг кристаллографических осей и изменениями, происходящими в водородных связях и в группах РО₄ [3,5–7], либо как следствие химического разложения кристаллов [4,8]. Результаты исследования низкочастотных упругих и неупругих свойств кристаллов этой группы показали [9,10], что температурный спектр внутреннего трения Q^{-1} имеет довольно сложный вид и что на температурных зависимостях Q^{-1} наряду с пиками Q^{-1} , соответствующими точкам Кюри и высокотемпературным фазовым переходам, наблюдаются также пики Q^{-1} в параэлектрической фазе несколько выше T_C , природа которых не установлена.

Поэтому целью данной работы являлось исследование природы аномалий низкочастотного внутреннего трения и модуля сдвига кристаллов CsH₂AsO₄ (CDA), KD₂PO₄ (DKDP) и KH₂PO₄ (KDP) в параэлектрической фазе при различных внешних воздействиях.

1. Методика эксперимента и образцы

Исследуемые монокристаллы были выращены динамическим методом из перенасыщенных водных растворов при регулируемом понижении температуры. Для измерений использовались образцы в форме прямоугольных брусков размером $20 \times 2 \times 2$ mm, вырезанные из однородных участков кристаллических буль с последующей полировкой на влажной ткани. Образцы были ориентированы так, чтобы их длинная сторона была направлена вдоль кристаллографической оси *X* или *Z* (соответственно образцы *X*- или *Z*-ориентации).

Внутреннее трение Q^{-1} и модуль сдвига *G* измеряли с помощью установки, сконструированной на основе обращенного крутильного маятника [11], на частоте ~ 20 Hz при амплитуде деформации ~ 5 · 10⁻⁵. В качестве меры внутреннего трения был выбран логарифмический декремент колебаний, деленный на π . Погрешность измерения Q^{-1} была не более 10% и модуля сдвига не более 5%. Установка позволяла также измерять угол φ закручивания образца в крутильном маятнике при изменении температуры и автоматически записывать кривые $\varphi(T)$ с помощью двухкоординатного самописца. При измерениях образцы помещались в термостат, где температура поддерживалась и измерялась с погрешностью не более 0.3 К в интервале от 90 до 370 К.

2. Экспериментальные результаты и обсуждение

Температурные зависимости внутреннего трения Q^{-1} (кривые 1) и модуля сдвига G (кривые2) для образцов X-ориентации кристаллов CDP, DKDP и KDP представлены на рис. 1–3 соответственно. Для всех кристаллов в исследованном диапазоне температур на зависимостях $Q^{-1}(T)$ наблюдается два явно выраженных пика Q^{-1} , которым соответствуют изменения (смягчение) в температурном поведении модуля сдвига G при температурах T_C и T^* . Что касается механических потерь в окрестности T_C , то механизм затухания низкочастотных упругих колебаний при фазовом переходе 1-го рода, ответственный за пик Q^{-1} , подробно рассмотрен в [9,12] и в данной работе обсуждаться не будет.

Для выяснения природы аномалий Q^{-1} и G при температуре T^* были проведены измерения $Q^{-1}(T)$, G(T)и $\varphi(T)$ при различной скорости изменения температуры, амплитуде внешних механических напряжений и др. Перед проведением каждого эксперимента образцы приводились к одному и тому же исходному состоянию, чтобы избавиться от влияния предыстории образца на измеряемые величины. Для этого после каждого измерения проводилась изотермическая выдержка образца при комнатной температуре в вакууме около 10^{-2} Torr в течение 12 часов.

Анализируя результаты, представленные на рис. 1–3, можно отметить, что аномалии Q^{-1} и G вблизи T^* наблюдаются для всех изученных кристаллов. Этот факт свидетельствует о том, что ответственный за них механизм является общим для кристаллов группы KH₂PO₄ и практически не зависит от дейтерирования и изоморфного замещения ионов, которые влияют лишь на температурное положение и величину обнаруженных аномалий.

Из рисунков видно, что пикам Q^{-1} при температурах T^* для разных кристаллов соответствует смягчение модуля сдвига *G*, имеющее такой же вид, что и при фазовых переходах в T_C , но несколько меньшее по величине. При

Рис. 1. Температурные зависимости внутреннего трения $Q^{-1}(I)$ и модуля сдвига G(2) для кристалла CsH₂AsO₄ при скорости нагрева 0.5 K/min.

Рис. 2. Температурные зависимости внутреннего трения $Q^{-1}(1)$, модуля сдвига G(2) и угла спонтанного закручивания φ_s для кристалла KD₂PO₄(3).

Рис. 3. Температурные зависимости внутреннего трения $Q^{-1}(1)$, модуля сдвига G(2) и угла спонтанного закручивания φ_s для кристалла KH₂PO₄ (3).

измерениях Q^{-1} и G в режиме нагрева и последующего охлаждения наблюдается температурный гистерезис, составляющий 5К при скорости изменения температуры 1 К/min. Изучение температурных зависимостей Q^{-1} на разных частотах в интервале от 6 Hz до 150 kHz показало, что высота пика в T* изменяется обратно пропорционально частоте, в то время как сущесвенного смещения пика Q^{-1} по температурной шкале при этом не происходит. Такое поведение пика внутреннего трения характерно для низкочастотных релаксационных процессов, связанных с фазовым превращением [12]. Однако в окрестности этого пика Q^{-1} не было обнаружено каких-либо особенностей в температурном ходе диэлектрической проницаемости ε_{33} на частоте 1.5 kHz и электропроводности. Причину этого обсудим несколько позже.

Если полагать, что пик механических потерь при T^* обусловлен флуктуационным механизмом зарождения новой фазы вещества и движением фазовой границы через систему стопоров [9,12], то для случая достаточно малых амплитуд колебаний образца высота пика Q_m^{-1} должна подчиняться следующему уравнению:

$$Q_m^{-1} = \frac{G\beta x_s^2}{kT} \cdot \frac{m}{\omega},\tag{1}$$

где m — скорость фазового превращения, т.е. относительный объем вещества, претерпевающего фазовый переход в единицу времени; β — эффективный объем критического зародыша; G — модуль сдвига; x_s — скачок спонтанной деформации в точке фазового перехода, ω частота, k — постоянная Больцмана, T — температура.

Как видно из формулы (1), флуктуационный механизм Q^{-1} не только объясняет обратную зависимость высоты пика Q_m^{-1} от частоты, но и предсказывает линейную зависимость Q_m^{-1} от скорости изменения температуры

Рис. 4. Температурные зависимости Q^{-1} в окрестности T^* для кристалла CsH₂H₂AsO₄ при различных скоростях нагрева V: I - 0.5; 2 - 1; 3 - 2.5 К/min. На вставке — зависимость высоты пика Q_m^{-1} от скорости нагрева V.

V (которая пропорциональна *m*). Именно такие зависимости Q_m^{-1} от V были получены в эксперименте для всех изученных кристаллов (см., например, рис. 4 для кристалла CDA). Оценки показали, что наблюдаемые эффекты не связаны с выравниванием температуры по объему образца из-за его конечной температуропроводности и с влиянием термоупругих деформаций на измеряемые в эксперименте величины Q^{-1} и G. Действительно, величину наибольшего запаздывания температуры ΔT вдоль радиуса образца *r*, обусловленного температуропроводностью χ материала, можно оценить из следующего выражения:

$$\Delta T = \frac{Vr^2}{2\chi}.$$
 (2)

Подставив в формулу (2) значения r = 1 mm, $\chi = 10^{-3}$ cm²/s [13] и наибольшую в условиях эксперимента V = 2.5 K/min, получаем $\Delta T = 0.1$ K, что существенно меньше ширины пика Q^{-1} , равной $\cong 30$ K. Такой перепад температур по толщине образца вызывает термоупругую деформацию

$$x_T = \alpha_T \Delta T/2, \tag{3}$$

где α_T — коэффициент линейного расширения. Полагая $\alpha_T = 4 \cdot 10^{-5} \, \text{K}^{-1}$ [13] для $T = 300 \, \text{K}$ и $\Delta T = 0.1 \, \text{K}$, получаем $x_T = 2 \cdot 10^{-6}$, что на порядок величины меньше тех амплитуд деформации, которые были использованы в эксперименте.

Формула (1) дает возможность оценить величину скачка спонтанной деформации x_s при фазовых переходах в T_C и T^* , исходя из экспериментальных данных по внутреннему трению. Полагая, что величина объема критического зародыша совпадает по порядку величины с размерами областей Кенцига $\beta \cong 10^{-19} \,\mathrm{cm}^3$ [14] и подставляя в (1) необходимые данные из эксперимента, получаем для CDA, DKDP и KDP соответственно значения $x_s = 10 \cdot 10^{-3}$, $5 \cdot 10^{-3}$ и $1.5 \cdot 10^{-3}$ при температуре T_C и $x_s = 3 \cdot 10^{-3}$, $9.8 \cdot 10^{-4}$ и $5 \cdot 10^{10^{-4}}$ при температуре T^* .

Согласно формуле (1), низкочастотное внутреннее трение при фазовом переходе 1-го рода определяется кинетикой фазового превращения и в случае изотермических измерений Q^{-1} при фиксированной температуре $(V \rightarrow 0)$ должны наблюдаться временные зависимости Q^{-1} . Пример таких зависимостей для кристалла CDA показан на рис. 5. Аналогичные зависимости были получены также и для кристаллов KDP и DKDP. Установлено, что зависимости $Q^{-1}(t)$ достаточно хорошо аппроксимируются экспоненциальными функциями типа

$$Q^{-1}(t) = Q_{\infty}^{-1} + \left(Q_0^{-1} - Q_{\infty}^{-1}\right) \cdot \exp(-t/\tau), \quad (4)$$

где Q_0^{-1} — внутреннее трение в начальный момент времени, Q_∞^{-1} внутреннее трение при $t \to \infty$, τ — время релаксации.

Возможность такой аппроксимации подтверждается тем, что в координатах $\lg \gamma = \lg (Q_0^{-1} - Q_\infty^{-1})/(Q^{-1} - Q_\infty^{-1}))$ от времени *t* экспериментальные точки достаточно хорошо ложатся на прямые линии (вставка на рис. 5). Оцененное по (4) время релаксации τ уменьшается с ростом температуры, а температурная зависимость τ подчиняется уравнению Аррениуса

$$\tau = \tau_0 \exp\left(\frac{U}{kT}\right),\tag{5}$$

где τ_0 — предэкспоненциальный множитель, слабо зависящий от температуры, k — постоянная Больцмана, U — энергия активации.

Обработка экспериментальных результатов с помощью формулы (5) дает значение $\tau_0 = 1.6 \text{ min}$ и высоты барьера U = 0.1 eV, которая близка к энергии взаимодействия межфазной границы с точечным дефектом [12]. Таким образом, временные зависимости Q^{-1} могут быть объяснены кинетикой межфазных границ, определяемой

Рис. 5. Временны́е зависимости Q^{-1} в окрестности T^* кристалла CsH₂AsO₄ при различных температурах: 1 - 298, 2 - 308, 3 - 318 K. На вставке — зависимость lg γ от времени для T = 318 K.

Физика твердого тела, 2000, том 42, вып. 11

2077

диффузионным перераспределением точечных дефектов в процессе изотермического отжига и перемещением межфазных границ с течением времени в новые, энергетически более выгодные положения.

Физическая природа механической релаксации при фазовом переходе 1-го рода заключается в том, что скорость перемещения фазовой границы в процессе фазового превращения контролируется термофлуктуационным преодолением потенциальных барьеров, созданных стопорами (точечными дефектами). При этом роль перегрева (переохлаждения) в возникновении внутреннего трения сводится к уменьшению высоты потенциального барьера вследствие давления на межфазную границу со стороны термодинамически невыгодной фазы. Очевидно, что потенциальные барьеры для движущейся межфазной границы создает ее взаимодействие с точечными дефектами кристаллической решетки. В условиях эксперимента ширина пика Q^{-1} на температурной шкале определяется продолжительностью во времени процесса фазового перехода, а форма пика Q^{-1} отражает изменение скорости фазового превращения при изменении температуры.

Полученные экспериментальные данные позволяют считать, что особенности внутреннего трения и модуля сдвига в окрестности температуры T^* в исследованных кристаллах могут быть связаны с наличием выше T_C нового структурного фазового перехода 1-го рода. Этот вывод подтверждается также исследованиями температурной зависимости угла φ_s спонтанного закручивания образца в крутильном маятнике (кривые 3 на рис. 2 и 3). Видно, что параэлектрической фазе при температурах, близких к T^* , также как и при сегнетоэлектрическом фазовом переходе в T_C , происходит скачкообразное изменение φ_s . Причем величина скачка в T^* заметно меньше, чем в окрестности T_C .

Известно [15], что в сегнетоэлектриках со сдвиговой спонтанной деформацией x_s , возникающей в T_C , появление скалывающих компонент деформации приводит в отсутствии внешнего механического напряжения к спонтанному закручиванию образца в крутильном маятнике при изменении температуры в окрестности точки фазового перехода на угол φ_s , равный

$$\varphi_s = \left(\frac{3l}{4a}\right) \cdot x_s. \tag{6}$$

Здесь *l* — длина образца, *a* — поперечный размер образца.

Оценка по (6) величины скачка деформации в точке Кюри кристалла KDP дала $x_{6s} = 1.4 \cdot 10^{-3}$, что близко к значению $x_{6s} = 1.5 \cdot 10^{-3}$, приведенному в [16]. Скачок деформации при температуре T^* , оцененный по измеренному углу закручивания, имеет существенно меньшую величину $x_6 = 3 \cdot 10^{-3}$, $8.5 \cdot 10^{-4}$ и $2.5 \cdot 10^{-4}$ для изученных кристаллов CDA, DKDP и KDP соответственно.

Несмотря на то, что кристаллы семейства KH₂PO₄ являются хорошо изученными объектами, в литературе отсутствуют сведения, которые могли бы на основе структурных исследований подтвердить наличие фазового перехода при температурах, близких к T^* . Поэтому маловероятно, что подобный фазовый переход, если он существует, происходит во всем объеме кристалла, повидимому, он происходит лишь в некоторых локальных областях — включениях другой фазы. Такое предположение основывается на результатах исследования кристалла KDP методом просвечивающей электронной микроскопии [17,18], в котором было обнаружено, что при комнатной температуре (т.е. существенно выше T_C) в тетрагональной матрице (точечная группа симметрии 42m) присутствуют включения ромбической фазы (*mm2*). Средний размер включений составляет величину порядка 500-4500 Å, а общий объем включений невелик и составляет от 1.5 до 5% в разных кристаллах. Можно считать, что обнаруженные в работе аномалии Q^{-1} и G связаны со структурным фазовым переходом не в тетрагональной матрице, а во включениях, при этом макроскопическая симметрия матрицы не изменяется. Поскольку объемная доля включений мала, то диэлектическая проницаемость такой микрогетерогенной системы определяется в основном диэлектрическими свойствами матрицы, а не включений, что объясняет отсутствие диэлектрических аномалий при температуре T*.

Наличие фазового перехода при T^* во включениях фазы с орторомбической симметрией mm2 подтверждается также обнаруженной в экспериментах ориентационной зависимостью Q^{-1} и G. Пик внутреннего трения Q_m^{-1} и смягчение модуля сдвига G наблюдаются не при любой ориентации образцов относительно кристаллографических осей. Аномалии Q^{-1} и G явно выражены в окрестности Т* только в случае образцов Х-ориентации и полностью отсутствует для образцов Z-ориентации. Аномальное поведение упругих и неупругих свойств в случае образцов Х-ориентации объясняется тем, что внешнее крутильное напряжение создает скалывающие компоненты σ_5 и σ_6 и, следовательно, сопряжено с параметром перехода x₆. При кручении образцов Z-ориентации возникают компоненты σ_4 и σ_5 , которые не "зацеплены" с x_6 , поэтому аномалии Q^{-1} и G вблизи T^* отсутствуют.

Таким образом, совокупность полученных в данной работе экспериментальных фактов, таких как: наличие пика внутреннего трения Q^{-1} и характерное для фазовых переходов смягчение модуля сдвига G; гистерезис Q^{-1} и G при циклическом изменении температуры; слабая зависимость положения пика Q^{-1} от частоты; ориентационная зависимость Q^{-1} и G; долговременная механическая релаксация при изотермической выдержке образца в области пика Q^{-1} , а также скачкообразное изменение сдвиговой компоненты деформации x_6 , оцененное по внутреннему трению и по углу спонтанного закручивания образца в крутильном маятнике, позволяет заключить, что в изученных кристаллах при температуре T^* про-исходит фазовый переход во включениях с изменением

симметрии $\bar{4}2mm \rightarrow mm2$. Причины возникновения включений орторомбической фазы в тетрагональной матрице пока еще точно не установлены. Высказываются предположения [18], что небольшие концентрации неконтролируемых примесей (Fe³⁺, Cr³⁺, Ca²⁺, Al³⁺) могут создавать локальные деформации, которые и приводят к орторомбическим искажениям кристаллической решетки. Вполне возможно, что роль таких примесей могут играть также различные фосфатные комплексы (HPO₄⁻², H₅P₂O₈⁻, H₃PO₄), которые всегда присутствуют даже в тщательно очищенных насыщенных водных растворах KH₂PO₄ [19].

Список литературы

- A.I. Baranov, V.P. Khiznichenko, L.A. Shuvalov. Ferroelectrics 100, 135 (1989).
- [2] А.Т. Амандосов, И.А. Величко, Л.Н. Рашкович. Кристаллография 26, 2, 406 (1981).
- [3] K. Itoh, T. Matsubayashi, E. Nakamura, H. Motegi. J. Phys. Soc. Jap. 39, 3, 843 (1975).
- [4] J.-H. Park, K.-S. Lee, J.-N. Kim. J. Korean Phys. Soc. 32, S1149 (1998).
- [5] R. Blinc, V. Dinic, D. Kolar, G. Lahajnar, J. Stepisnik, S. Zumer, N. Vene, D. Hafzi. J. Chem. Phys. 49, 11, 4996 (1968).
- [6] В.Г. Гофман, М.Д. Ивченкова, А.В. Мищенко, Б.У. Шаймердинов. Кристаллография 22, 5, 1107 (1977).
- [7] J.I. Eicholson, J. Soest. J. Chem. Phys. 60, 2, 715 (1974).
- [8] B.-K. Choi, S.-C. Chung. Ferroelectrics 155, 153 (1993).
- [9] S.A. Gridnev, B.M. Darinskii. Phys. Stat. Sol. (a), 47, 379 (1978).
- [10] S.A. Gridnev, S.A. Kravchenko. Ferroelectrics 186, 313 (1996).
- [11] С.А. Гриднев, В.И. Кудряш, Л.А. Шувалов. Изв. АН СССР. Сер. физ. 43, 8, 1718 (1979).
- [12] S.A. Gridnev. Ferroelectrics 112, 107 (1990).
- [13] Акустические кристаллы. Справочник / Под ред. М.П. Шаскольской. Наука, М. (1973). 632 с.
- [14] W. Kanzig. Helv. Phys. Acta 24, 175 (1951).
- [15] С.А. Гриднев, А.В. Бирюков, О.Н. Иванов. ФТТ 41, 10,1848 (1999).
- [16] Ф. Иона, Дж. Ширане. Сегнетоэлектрические кристаллы. Мир, М. (1965). 555 с.
- [17] Е.И. Суворова, В.В. Клечковская. Кристаллография 36, 3, 729 (1991).
- [18] E.I. Suvorova, V.V. Klechkovskaya. Ferroelectrics 144, 245 (1993).
- [19] M.R. Cerreta, K.A. Berglund. J. Crystal Growth 84, 577 (1987).