Релаксационные процессы в окрашенных кристаллах LiF после совместного воздействия УФ излучения и ударной волны

© М.Г. Абрамишвили*, З.Г. Ахвледиани, Т.Л. Калабегишвили, В.Г. Квачадзе*, З.К. Саралидзе

Институт физики Академии наук Грузии, 380077 Тбилиси, Грузия * Научно-исследовательский институт автоматических систем "Схиви", 380082 Тбилиси, Грузия E-mail: tlk@physics.iberiapac.ge

(Поступила в Редакцию 16 февраля 2000 г.)

Исследована релаксация F_2^+ -центров в радиационно-окрашенных кристаллах фторида лития с момента совместного воздействия импульсного УФ излучения и ударной волны. Показано, что кривая отжига указанных центров при комнатной температуре имеет немонотонный характер и является результатом трех процессов — процессов разрушения неустойчивых (короткоживущих) и устойчивых F_2^+ -центров и процесса образования устойчивых центров при случайной встрече соответствующих ингредиентов в процессе их диффузионного блуждания по решетке.

Выполнение данной работы субсидировано грантом 2.15 АН Грузии и дополнительным финансированием от Департамента науки и технологий Грузии.

В кристаллах фторида лития при околокомнатных температурах анионные вакансии, равно как и центры окраски и их комплексы, обладают достаточно высокими подвижностями. Поэтому при хранении радиационноокрашенных кристаллов при комнатной температуре в темноте в течение длительного времени (месяцы, годы) происходит взаимное превращение центров окраски различного типа. Это в равной степени относится и к заряженным F_2^+ -центрам [1,2]. Эти центры способны двигаться по кристаллу путем последовательных 60°-переориентаций [3], благодаря чему они могут эффективно взаимодействовать с другими центрами окраски и различными структурными дефектами и в итоге либо исчезать (разваливаться), либо входить в более сложные комплексы. Такие процессы с участием подвижных при комнатной температуре дефектов ($V_a^+, V_a^+ : O^{2-}$, F, F_{2}^{+}) наблюдались и в наших экспериментах, притом с некоторыми особенностями, которые не обнаруживались ранее. Это убедило нас в том, что исследование релаксационных процессов в длительном промежутке времени представляет определенный интерес. Такие исследования позволяют проверить правильность сложившихся представлений о процессах дефектообразования и генерации центров окраски, в частности, способствовать более четкому представлению механизмов стабилизирования лазерных центров (F_2^+) при совместном воздействии различных полей, которые были предложены нами в работах [4,5].

Спустя полгода после завершения исследования разрушения стабильных F_2^+ -центров, образовавшихся в радиационно-окрашенных кристаллах после совместного воздействия УФ излучения и ударной волны [5], вновь был снят спектр оптического поглощения на исследуемом кристалле (18-й месяц после воздействия), который показал заметный прирост количества F_2^+ -центров по сравнению с последним измерением (12-й месяц после воздействия). Этот результат вначале несколько удивил нас, поскольку условия хранения ничем не отличались от предыдущего периода за исключением жаркого лета, которое могло поднять комнатную температуру на $10-15^{\circ}$ С. Однако сопоставление этого результата с характером поведения других родственных центров окраски показало, что он является следствием происходящего в хранящемся кристалле общего процесса взаимопревращения центров.

Наблюдение за этим процессом в исследуемом окрашенном кристалле начиная с момента начала совместного воздействия — цель настоящей работы.

1. Эксперимент

Исследуемые кристаллы фторида лития были выколоты из монокристаллического блока, который предварительно изотермически отжигался при температуре не менее 700°С в течение 3 h с последующим медленным охлаждением до комнатной температуры. Полученные образцы $(10 \times 10 \times 0.5 \text{ mm})$ вновь отжигались в тех же условиях, что и указанные выше, и затем облучались в свободном состоянии в канале реактора ИРТ-М Института физики АН Грузии. Дифференциальный поток тепловых нейтронов, падающих на кристалл, составлял $(2.5 \pm 0.3) \cdot 10^{12} \text{ n/cm}^2$ s, интегральная доза — $2.4 \times 10^{14} \text{ n/cm}^2$. В спектрах оптического поглощения наряду с *F*-полосой (250 nm) наблюдалась также интенсивная *F*₂-полоса (450 nm). *F*₂⁺-центры отсутствовали.

В результате воздействия на эти кристаллы жесткого импульсного УФ излучения, сопровождаемого ударной волной, ¹ наблюдалось образование F_2^+ -центров

¹ Указанное воздействие проводилось на установке, в которой в качестве источника УФ излучения и ударных волн использовался скользящий разряд на поверхности диэлектрика (модификация "плазменного плато") [6].

Рис. 1. Зависимости концентраций F_2^+ -центров (1) и коэффициентов поглощения в максимумах F-(2) и F_2 -(3) полос от времени хранения кристалла в темноте при комнатной температуре.

(640–650 nm), термическая устойчивость которых оказалась достаточно высокой. Несмотря на то что половина их количества разрушается за первые полторы недели, концентрация оставшихся центров медленно изменяется в течение двух с лишним лет (см. также [5]).

2. Результаты и их обсуждение

На рис. 1 представлены временные зависимости коэффициентов поглощения кристалла в максимумах Fи F2-полос (кривые 2 и 3). Из этого рисунка видно, что вследствие совместного воздействия на радиационно окрашенный кристалл УФ излучения и ударной волны (наряду с созданием стабильных комплексов $F_2^+: O^{2-}$ [5]) заметно понижается (обозначено штриховыми линиями) не только интенсивность F2-полосы (кривая 3), т.е. F_2 -центров, которые являются основным материалом для образования устойчивых комплексов с F_2^+ -центрами (F_2^+ : O²⁻), но и интенсивность *F*-полосы (кривая 2). Из этого же рисунка видно, что понижение коэффициентов поглощения кристалла в максимумах F- и F2-полос продолжается достаточно долго после прекращения воздействия. Следует отметить, что, хотя количество исчезающих за единицу времени F-центров почти на порядок превосходит то же для F2-центров, относительные скорости их исчезновения почти одинаковы и составляют примерно 1.2-1.4% в месяц.

Для образования комплексов $F_2^+: O^{2-}$, в которых F_2^+ -центры стабилизированы O^{2-} -ионами, кроме реакций

$$F_2 \to F_2^+ + e F_2^+ + O^{2-} \to F_2^+ : O^{2-}$$
(1)

возможны реакции с участием как F-центров и O^{2-} -ионов

$$F + V_a^+ \to F_2^+, \tag{2}$$

$$F_2^+ + \mathcal{O}^{2-} \to F_2^+ : \mathcal{O}^{2-},$$
 (2')

так и F-центров и комплексов V_a^+ : O^{2-}

$$V_a^+: \mathcal{O}^{2-} + F \to F_2^+: \mathcal{O}^{2-}.$$
 (3)

Для осуществления последней реакции необходимо наличие в кристалле дипольных V_a^+ : O^{2-} -центров, которые могут образоваться по реакциям с участием вакансий

$$\left. \begin{array}{c} {\rm O}^- + e \to {\rm O}^{2-} \\ {\rm O}^{2-} + V_a^+ \to V_a^+ : {\rm O}^{2-} \end{array} \right\}$$
(4)

или с участием *F*-центров

$$\mathbf{O}^- + F \to V_a^+ : \mathbf{O}^{2-}.$$
 (5)

В исходных кристаллах LiF (до предварительного облучения) в УФ области спектра оптического поглощения было выявлено сплошное поглощение (200–500 nm), свидетельствующее о наличии небольшого количества $V_a^+: O^{2-}$ диполей (рис. 2): ниже 250 nm заметно увеличивается поглощение, начинает выявляться полоса, максимум которой должен быть ниже 200 nm (известно, что максимумы полос поглощения, присущих этим дипольным центрам, должны находиться около

Рис. 2. Спектр оптического поглощения исходного (неокрашенного) кристалла LiF.

Рис. 3. Спектр оптического поглощения исследуемого окрашенного кристалла LiF после воздействия УФ излучением и ударной волной (1) и хранения в темноте при комнатной температуре в течение 12 (2), 18 (3), 21 (4), 27 (5) месяцев.

113 и 190 nm [1]). Основная часть этих кислородновакансионных дипольных центров и их скопления, очевидно, образуются в процессе выращивания кристалла на воздухе, хотя не исключено, что процесс продолжается при комнатной температуре и в обычных условиях, но слишком медленно.

В процессе облучения, а также совместного воздействия УФ излучением и ударной волной количество диполей увеличивается значительно. Однако определение количества этих дипольных центров с помощью измерения поглощения или эмиссии, к сожалению, затруднено, так как в УФ части спектра после радиационного окрашивания доминирует интенсивная *F*-полоса. Что касается подвижности этих комплексов, то они так же подвижны при комнатной температуре, как и анионные вакансии: согласно [1], энергии активации миграции диполей V_a^+ : O^{2-} и анионных вакансий соответственно равны 1.3 ± 0.2 и 1.0 ± 0.2 eV.

В работе [5] на основе результатов первого года наблюдения релаксационных процессов было предположено, что разрушение F_2^+ -центров в хранящемся в темноте при комнатной температуре кристалле носит двухстадийный характер, что было объяснено наличием F_2^+ -центров двух типов. Первый — это малостабильные F_2^+ -центры (имелись в виду изолированные F_2^+ -центры), которые разрушаются в основном в течение полутора-двух недель после совместного воздействия на кристалл УФ излучением и ударной волной; второй тип — это стабилизированные конфигурации комплексов с F_2^+ -центрами (по всей вероятности, это — комплексы

 $F_2^+: O^{2-}$ [5]), которые сохраняются в кристалле в течение более чем одного года. Эти F_2^+ -центры, стабилизированные в указанных комплексах, разрушаются в два этапа. Первый — медленное разрушение долгоживущих комплексов $F_2^+: O^{2-}$ согласно реакции

$$F_2^+: \mathcal{O}^{2-} \to F_2^+ + \mathcal{O}^{2-},$$
 (6)

а второй этап — быстрое разрушение образовавшихся короткоживущих одиночных F_2^+ -центров. F_2^+ -центры могут разрушаться как за счет деионизации $(F_2^+ + e \rightarrow F_2)$, так и за счет реакции $F_2^+ \rightarrow F + V_a^+$. Эти реакции являются источниками F- и F_2 -центров. Тем не менее в процессе выдержки кристаллов количество этих центров за первые восемь месяцев уменьшается (кривые 2 и 3 на рис. 1), что может быть объяснено тем, что эти центры расходуются на образование более сложных центров окраски (например, $F_2^+ + F \rightarrow F_3^+$ и т.д.). Такая тенденция действительно прослеживается (например, рост поглощения при 500–550 пт на кривой 2 рис. 3), что должно быть обусловлено F_4 -центрами окраски.

Согласно приведенным представлениям, кривая разрушения F_2^+ -центров должна быть суммой двух экспонент с соответствующими характерными временами. Однако на второй стадии кривая разрушения падает намного медленнее, чем это могло быть обусловлено экспонентой. Кроме того, как уже было отмечено в начале статьи, измерение спектра оптического поглощения исследуемого кристалла спустя полгода после окончания исследований [5] обнаружило заметный прирост количества F_2^+ -центров по сравнению с последним измерением (кривые 3 и 2 соответственно на рис. 3). Эти факты свидетельствуют о том, что в хранящемся кристалле происходят интенсивные диффузионные процессы, которые наряду с другими явлениями (увеличение количества F_3^- - (682, 790 nm) и F_3 - (375 nm) центров, уменьшение поглощения при 500–550 nm и т.д.) приводят к восстановлению (образованию) стабилизирующих F_2^+ -центры комплексов F_2^+ : O²⁻.

Из сказанного выше следует, что кривая отжига F_2^+ -центров при комнатной температуре должна быть результатом трех процессов — процессов разрушения неустойчивых (короткоживущих) и устойчивых (стабилизированных в комплексах $F_2^+: O^{2-}$) F_2^+ -центров и процесса образования устойчивых центров при случайной встрече соответствующих ингредиентов в процессе диффузионного блуждания, например, по реакции (3). Однако, чтобы объяснить немонотонный характер временной зависимости количества F_2^+ -центров (увеличение количества центров в определенном временном интервале на фоне общего уменьшения), следует сделать несколько предположений.

1) Образование анизотропных комплексов $(F_2^+, F_2^+: O^{2-}, V_a^+: O^{2-})$ с участием кислородных ионов (реакции типа (1) и (4)) или из изотропных дефектов (реакции типа (2)) в обычных условиях выдержки кристаллов сильно затруднено (слишком велика энергия образования). Такие реакции могут протекать интенсивно только при наличии ориентированных полей [5]. В нашем случае указанные анизотропные комплексы могли образоваться исключительно в процессе воздействия на кристалл электрического поля или ударной волны одновременно с УФ излучением и накопиться в кристаллек комичестве.

2) Образование анизоропных комплексов по реакциям с участием анизотропных же дефектов (например, реакции типа (3)) может протекать с достаточной вероятностью.

 Центры (комплексы), участвующие в реакциях слияния, обладают достаточно высокой подвижностью.

 Возможен также распад анизотропных комплексов на составные части со временем полураспада, зависящим от типа комплекса.

В рамках приведенных выше предположений можно считать, что в кристаллах, подверженных совместному воздействию УФ излучения и ударной волны или электрического поля, после прекращения воздействия протекают следующие реакции:

$$F_{2}^{+}: O^{2-} \xrightarrow{\alpha_{1}} F_{2}^{+} + O^{2-}$$

$$F_{2}^{+}: O^{2-} \xrightarrow{\alpha_{2}} V_{a}^{+}: O^{2-} + F$$

$$Y_{a}^{+}: O^{2-} \xrightarrow{\alpha_{3}} V_{a}^{+} + O^{2-}$$

$$F_{2}^{+} \xrightarrow{\alpha_{4}} V_{a}^{+} + F$$

$$\left.\right\},$$
(7)

где α и γ — скорости прямых (распад) и обратных (соединение) реакций. В соответствии с первым пред-

положением $\gamma = \gamma_3 = \gamma_4 \equiv 0$. Обозначив концентрацию стабилизированных F_2^+ -центром ($F_2^+ : O^{2-}$ -комплексов) через N, комплексов $V_a^+ : O^{2-}$ — через n, нестабильных F_2^+ -центров — через N', а F-центров — через n_F , для описания процессов, задаваемых реакциями (7), можно написать следующую замкнутую систему уравнений:

$$\begin{split} \dot{N} &= -(\alpha_1 + \alpha_2)N + \gamma_2 n n_F \\ \dot{n} &= -\alpha_3 n + \alpha_2 N - \gamma_2 n n_F \\ \dot{N}' &= \alpha_1 N - \alpha_4 N' \\ \dot{n}_F &= \alpha_2 N + \alpha_4 N' - \gamma_2 n n_F \end{split}$$
(8)

в которых начальные значения концентраций $N(0) = N_0$, $n(0) = n_0$, $N'(0) = N'_0$ и $n_F(0) = n_F^0$ определяются комбинированным воздействием и предполагаются известными,

Полагая, что нестабильные F_2^+ -центры (F_2^+ -центры, не захваченные в комплексы) являются "короткоживущими" по сравнению со стабилизированными комплексами $F_2^+: O^{2-}$ и $V_a^+: O^{2-}$, можно считать, что для F_2^+ -центров квазистационарное состояние устанавливается быстро ($\alpha_4 \gg \alpha_{1,2,3}, \gamma_2 n_F^0$) и квазистационарная концентрация N' может быть определена из условия $\dot{N}' = 0$, т.е. $\alpha_4 N' \equiv \alpha_1 N$. Используя это условие, можно убедиться, что $\dot{N} = -\dot{n}_F$. Такая корреляция между временны́ми зависимостями концентрации F_2^+ : O^{2-} -комплексов и F-центров качественно действительно наблюдается на рис. 1. Последнее условие позволяет выразить n_F через $N, n_F(t) = N_0 + n_F^0 - N(t)$ и для концентраций N(t) и n(t)получить следующую систему уравнений:

$$\dot{N} = -(\alpha_1 + \alpha_2)N + \gamma_2 n(N_0 + n_F^0 - N) \dot{n} = -\alpha_3 n + \alpha_2 N - \gamma_2 n(N_0 + n_F^0 - N)$$
(9)

К сожалению, из-за нелинейности решить эту систему уравнений аналитически не удается. Численное решение этой системы с использованием компьютерных математических программ на составляет труда. Однако такое решение не представляет практического интереса, поскольку неизвестны точные значения параметров уравнений (коэффициентов α и γ) и начальных концентраций центров. Поэтому ограничимся только качественным анализом.

Нетрудно убедиться, что у системы (9) есть решение, которое асимптотически стремится к нулю, в то время как начальное значение $\dot{N}(t = 0)$ в зависимости от значений параметров, входящих в уравнение, может быть как отрицательным, так и положительным ($\gamma_2 n_0 n_F^0 \gtrless (\alpha_1 + \alpha_2) N_0$). Следовательно, для концентрации стабилизированных F_2^+ -центров, т. е. комплексов F_2^+ : O^{2-} , можно получить немонотонную зависимость N(t) с начальным ростом, выходом на максимальное значение и с асимптотическим уменьшением с выходом на нулевое значение. При этом характерное время таких процессов несравненно больше, чем время жизни нестабильных F_2^+ -центров.

Из сказанного выше следует, что временная зависимость полной концентрации F_2^+ -центров (стабилизированных и нестабильных) может иметь быстроспадающую область, описывающую в основном исчезновение нестабильных центров, затем область слабой зависимости, подобную плато с постепенным увеличением при больших временах, а затем вновь область уменьшения концентрации, с постепенным спадом до нуля. Эта зависимость качественно совпадает с той, которая наблюдалась нами и полностью изображена на рис. 1 (кривая, приведенная на рис. 6 в [5], включающая результаты наблюдения первых 12 месяцев, является частью этой полной кривой).

Немонотонный характер релаксации, очевидно, не является исключительным свойством стабилизированных F_2^+ -центров окраски в кристаллах, подвергшихся совместному воздействию жесткого УФ излучения и ударной волны. Немонотонность, безусловно, должна была проявиться и в релаксационных процессах по крайней мере тех центров окраски, которые участвуют в создании указанных заряженных центров или же являются продуктами их распада. Действительно, коэфффициенты поглощения в максимумах F- и F2-полос также проявляют сложную, немонотонную зависимость от времени хранения кристалла при комнатной температуре. Медленное и постепенное разрушение F_2^+ -центров окраски (кривая 1 на рис. 1) привело к началу второго года хранения к накоплению (частичному восстановлению) как F-, так и F_2 -центров окраски (кривые 2 и 3 соответственно). При этом наряду с F₂⁺-центрами к этому моменту понижаются количества F₃- и F₃⁻-центров. Кривые 2 и 3 проходят через максимумы и в дальнейшем начинают понижаться как раз в том интервале времени, где наблюдается рост количества F_2^+ -центров. Корреляция кривой 1 с кривыми 2 и 3 убедительно свидетельствует о реализации тех реакций в исследуемых кристаллах, которые легли в основу теоретического анализа.

Процессы накопления F_2^+ : О²⁻-комплексов при долгом хранении окрашенных кристаллов LiF при комнатной температуре наблюдались также в работах [1,2]. В [1] за восемь месящев количество указанных комплексов увеличилось в 1.5 раза. Процесс создания $F_2^+: O^{2-}$ -комплексов в [2] также не заканчивается за несколько часов — медленное нарастание их полосы поглощения наблюдается еще в течение ряда месяцев. Так, за восемь месяцев хранения окрашенного кристалла при комнатной температуре величина поглощения F_2^+ : O²⁻-комплексов увеличивается почти в 2 раза. Однако особо следует подчеркнуть, что в этих кристаллах концентрации кислородосодержащих примесей и, следовательно, ионов O²⁻ были более чем на порядок больше, нежели в тех, которые исследовались нами при совместном воздействии УФ излучения и ударной волны после окрашивания. Поэтому, возможно, в случаях [1,2] обратные реакции с образованием кислородосодержащих комплексов идут с заметной скоростью за счет больших значений концентраций О²⁻-ионов. В нашем же случае, согласно работам [4,5], эти реакции при наличии одноосного внешнего поля могут эффективно идти даже

Рис. 4. Спектры люминесценции устойчивых (1) и неустойчивых (2) F_2^+ -центров. Последнее было измерено спустя час после воздействия УФ излучения на окрашенный кристалл.

при малых концентрациях O^{2-} -ионов (в определенных направлениях энергетический барьер понижается, что приводит к эффективному увеличению коэффициентов γ_1 и γ_3). В работах [1,2] также наблюдается одновременная релаксация и других центров окраски: снижается величина поглощения F- и F_2 -центров, растет поглощение с $\lambda_m = 390$ nm и т.д. Полосы поглощения $F_2^+: O^{2-}$ -центров в [2] по отношению к термически неустойчивым F_2^+ -центрам (640 nm) сдвинуты в корот-коволновую сторону и имеют $\lambda_m = 620$ nm. В отличие от этого в спектре оптического поглощения исследуемых нами кристаллов наблюдается небольшое (~ 15 nm), но четко выраженное смещение $F_2^+: O^{2-}$ -полосы в сторону длинных волн (ср. кривые 2 и 3 на рис. 3).

Данная работа заканчивает один этап наших исследований механизмов стабилизации лазерных F_2^+ -центров в кристаллах фторида лития, подвергшихся совместному воздействию различных полей. Следующим этапом представляется изучение их генерационных свойств, первый результат которого приведен на рис. 4. Это — спектр люминесценции окрашенного кристалла LiF, измеренный на 21 месяце после совместного воздействия УФ излучения и ударной волны с целью определения основных харктеристик активного центра, а именно определения положения полосы излучения (эмиссии), ее полуширины и т.д. На рисунке видна полоса эмиссии стабильных (устойчивых) F_2^+ -центров с максимумом при 950 nm и спектральной шириной 65 nm. Для сравнения на том же рисунке приводится спектр люминесценции (с максимумом при 965 nmn и той же полушириной) нестабилизированных F_2^+ -центров (кривая 2), наблюдавшийся на контрольном образце спустя один час после воздействия на него только УФ излучением в течение 15 минут (ДРШ-250). После измерения люминесценции имеет место заметное уменьшение F₂⁺-полосы и исчезновение пиков F_3^- -центров, а также сужение F_2 -полосы и смещение ее максимума в коротковолновую область спектра (кривая 4 на рис. 3). Последнее, по-видимому, является результатом разрушения F_3^+ -центров, полоса которых сильно перекрывается с F_2 -полосой. Установлено также разрушение незаряженных F_3 -центров (370 nm). Обнаруженное в спектре оптического поглощения исследуемого кристалла заметное уменьшение F_2^+ -полосы и исчезновение пиков F_3^- -центров окраски после измерения спектров люминесценции может быть вызвано [7] передачей энергии от возбужденного F_2^+ -центра к F_3^- -центру в процессе возбуждения. Возбужденные F_3^- -центры могут ионизоваться, а образованные свободные электроны — нейтрализовать F_2^+ -центры.

Авторы признательны С.В. Соболевской за помощь в оформлении статьи.

Список литературы

- L.C. Courrol, L. Gomes, I.M. Ranieri. Phys. Rev. B42, 7, 4741 (1990).
- [2] Б.Д. Лобанов, Н.Т. Максимова, Е.Д. Исянова, В.Н. Ломасов, А.М. Проворов, П.Н. Цирульник. Оптика и спекроскопия 63, 1, 816 (19987).
- [3] В.И. Барышников, В.А. Григоров, Б.Д. Лобанов, Е.Ф. Мартынович, Э.Э. Пензина, В.М. Хулугуров, И.А. Чепурной. Изв. АН СССР. Сер. физ. 54, 8, 1467 (1990).
- [4] М.Г. Абрамишвили, В.Г. Квачадзе, З.К. Саралидзе. ФТТ 29, 1, 39 (1987).
- [5] М.Г. Абрамишвили, З.Г. Ахвледиани, Т.Л. Калабегишвили, В.Г. Квачадзе, З.К. Саралидзе. ФТТ 40, 11, 2044 (1998).
- [6] М.Г. Абрамишвили, З.Г. Ахвледиани, Э.М. Бархударов, Т.Л. Калабегишвили, В.Г. Квачадзе, М.И. Тактакишвили. ФТТ 37, 8, 2526 (1995).
- [7] Ю.Л. Гусев, С.П. Маренников, В.П. Чеботарев. Изв. АН СССР. Сер. физ. 44, 10, 2018 (1980).