# Расчет электронной поляризуемости ионов и параметров межионного отталкивания в кристаллах LiNbO<sub>3</sub>

#### © А.В. Яценко

Симферопольский государственный университет, 95007 Симферополь, Украина E-mail: roton@ccssu.crimea.ua

#### (Поступила в окончательном виде 24 февраля 2000 г.)

Рассматривается методика расчета анизотропии электронной поляризуемости ионов  $O^{2-}$  в кислороднооктаэдрических сегнетоэлектриках. Показано, что при смешанном ионно-ковалентном характере внутрикристаллических связей расчет поляризуемости в приближении независимых ионов приводит к неправильным результатам. Для сегнетоэлектрика LiNbO<sub>3</sub> рассчитаны значения главных компонент тензора поляризуемости ионов  $O^{2-}$ , определено вероятное значение электронной поляризуемости ионов Nb<sup>5+</sup>. На основании анализа устойчивости структуры LiNbO<sub>3</sub> проведена проверка полученных данных.

В настоящее время широкое развитие получило компьютерное моделирование структуры и физических свойств веществ в монокристаллическом состоянии, основанное в первую очередь на анализе электростатических взаимодействий [1]. Этот метод эффективен лишь при наличии достаточно полной информации о величине эффективных зарядов ионов, их электронной поляризуемости и параметрах межионного отталкивания, вызванного перекрытием электронных оболочек. Корректность этих данных особо существенна при изучении веществ с частично ковалентной связью, например, сегнетоэлектриков типа смещения, классическим представителем которых является ниобат лития LiNbO<sub>3</sub>.

Ранее для кристаллов LiNbO3 были рассчитаны поляризуемости ионов Li<sup>+</sup> и кластеров (NbO<sub>3</sub>)<sup>-</sup> [2], а в [3] были получены значения поляризуемости всех ионов, входящих в структуру:  $\alpha_{Li} = 0.03 \cdot 10^{-3}$ ,  $\alpha_{\rm Nb} = 0.945 \cdot 10^{-3}, \ \alpha_{\rm O} = 1.976 \cdot 10^{-3} \, {\rm nm}^3$ . Расчеты проводились в приближении изотропии поляризуемости ионов. Однако известно, что в монокристаллах ниобата лития (оптический диапазон) поляризуемость связей (Nb-O) нелинейна [4]. Электронные оболочки ионов Nb<sup>5+</sup> и ближайших ионов О<sup>2-</sup> существенно перекрываются, что приводит к несферической симметрии внешних электронных оболочек ионов О<sup>2-</sup>. Таким образом, электронная поляризуемость ионов О<sup>2-</sup> должна описываться тензором 2-го ранга. Далее рассматривается методика расчета анизотропии электронной поляризуемости ионов в монокристаллических соединениях и проводится анализ устойчивости структуры кристаллов LiNbO3.

### 1. Методика расчета

Рассмотрим действие на сегнетоэлектрический кристалл линейно поляризованной электромагнитной волны оптического диапазона. Если амплитуда электрической компоненты достаточно мала, то связь между напряженностью электрического поля световой волны **E** и приращением поляризации кристалла  $\Delta$ **P**  определяется линейным приближением

$$\Delta P_k = \varepsilon_0 (\varepsilon_k - 1) E_k, \tag{1}$$

где  $E_k$  и  $P_k$  — компоненты соответствующих векторов вдоль направления **k**,  $\varepsilon_k$  — диэлектрическая проницаемость кристалла. С другой стороны, приращение поляризации можно записать как

$$\Delta \mathbf{P} = \sum_{i=1}^{S} N_i \Delta \mathbf{p}_i, \qquad (2)$$

где S — число сортов структурно-неэквивалентных ионов,  $N_i$  — объемная концентрация ионов *i*-го сорта,  $\Delta p_i$  — индуцированное светом приращение электрического дипольного момента иона *i*-го сорта.

Расчет индуцированных дипольных моментов ионов в кристаллической решетке обычно выполняется итерационным методом. Уравнение первой итерации при изотропной поляризуемости ионов имеет вид

$$\Delta \mathbf{p}_i = \alpha_1 \left[ \mathbf{E}' + \sum_{j=1}^{S} \mathbf{E}_{ij}(\alpha_j \mathbf{E}') \right], \tag{3}$$

где  $\mathbf{E}' = \mathbf{E} + \Delta \mathbf{P}/3\varepsilon_0$  — напряженность макроскопической компоненты внутрикристаллического поля, вызванного световой волной,  $\alpha_i$  — поляризуемость иона *i*-го сорта,  $\mathbf{E}_{ij}$  — локальное поле, создаваемое на ионе *i*-го сорта *j*-й дипольной подсистемой. Для ионов, находящихся на оси симметрии 3-го порядка,  $\mathbf{E}' \parallel \mathbf{E}_{ij}$ , и компоненты  $\mathbf{E}_{ij}$  в декартовой системе координат могут быть записаны следующим образом:

$$E_{ijk} = \frac{\alpha_j E'_k}{4\pi\varepsilon_0} \sum_{m=1}^{M_j} \frac{3K_{ijm}^2 - R_{ijm}^2}{R_{ijm}^5} = \alpha_j E_k D_{ijk}, \qquad (4)$$

где  $k = x, y, z; R_{ijm}$  — расстояние от выделенного иона *i*-го сорта до *m*-го иона *j*-го сорта,  $K_{ijm}$  — k-я компонента  $R_{ijm}, M_j$  — количество ионов *j*-го сорта в выбранной области суммирования,  $D_{ijk}$  — соответстующая структурная сумма.

Если при расчете  $\Delta p_i$  ограничиться только первой итерацией, уравнение (3) можно покомпонентно разделить на  $E'_k$  и получить выражения для эффективных поляризуемостей ( $\alpha_{\text{eff}}$ )<sub>*ik*</sub> иона *i*-го сорта с учетом действия локального окружения

$$(\alpha_{\text{eff}})_{ik} = \frac{\Delta p_{ik}}{E'_k} = \alpha_i \bigg[ 1 + \sum_{j=1}^s \alpha_j D_{ijk} \bigg] \alpha_i b_{ik}.$$
(5)

Объединяя выражения (1)–(5), получаем уравнение Лорентц–Лоренца с поправкой на действие ближайшего дипольного окружения

$$\frac{n_k^2 - 1}{n_k^2 + 2} = \frac{1}{3\varepsilon_0} \sum_{i=1}^{S} N_i b_{ik} \alpha_i,$$
(6)

где  $n_k$  — коэффициент преломления кристалла при **Е** || **К**. Подобный подход к расчету поляризуемостей был использован в [2].

При анизотропии поляризуемости ионов j-го сорта компоненты вклада в локальное поле на ионе i-го сорта (внешнее поле **E** направлено по оси **x**) от j-й дипольной подсистемы записываются следующим образом:

$$(E_{ijx})_{x} = E'_{x} \left[ \sum_{l=1}^{3} \sum_{f} (\alpha_{ll})_{j} \cos \theta_{lxj} \cos \theta_{lfj} D_{ijxf} \right] = E'_{x} (T_{ijx})_{x},$$

$$(E_{ijx})_{y} = E'_{x} \left[ \sum_{l=1}^{3} \sum_{f} (\alpha_{ll})_{j} \cos \theta_{lxj} \cos \theta_{lfj} D_{ijyf} \right] = E'_{x} (T_{ijx})_{y},$$

$$(E_{ijx})_{z} = E'_{x} \left[ \sum_{l=1}^{3} \sum_{f} (\alpha_{ll})_{j} \cos \theta_{lxj} \cos \theta_{lfj} D_{ijzf} \right] = E'_{x} (T_{ijx})_{z},$$

где  $\theta_{lfj}$  — углы между *l*-й главной осью тензора поляризуемости и направлением **f**,  $(\alpha_{ll})_j$  — компоненты тензора поляризуемости ионов *j*-го сорта в системе собственных осей, f = x, y, z. Структурные суммы  $D_{ijkf}$  и  $D_{ijkk}$ находятся как

$$D_{ijkf} = \frac{1}{4\pi\varepsilon_0} \sum_{m=1}^{M_j} \frac{3K_{ijm}F_{ijm} - \delta_{kf}R_{ijm}^2}{R_{ijm}^5},$$
 (7)

где  $F_{ijm}$  определяется аналогично  $K_{ijm}$  и  $\delta_{kf}$  — символ Кронекера.

В общем случае локальное поле не совпадает по направлению с **E**, поэтому общее выражение для эф-фективной поляризуемости ионов *i*-го сорта приобретает следующий вид:

$$(\alpha_{\text{eff}})_{ix} = \sum_{l=1}^{3} (\alpha_{ll})_{i} \cos^{2} \theta_{lxi} \left[ 1 + \sum_{j=1}^{S} (T_{ijx})_{x} \right] + \sum_{l=1}^{3} (\alpha_{ll})_{i} \cos \theta_{lxi} \cos \theta_{lyi} \sum_{j=1}^{S} (T_{ijx})_{y} + \sum_{l=1}^{3} (\alpha_{ll})_{i} \cos \theta_{lxi} \cos \theta_{lzi} \sum_{j=1}^{S} (T_{ijx})_{z}.$$
(8)

Аналогичное выражение для  $(\alpha_{\text{eff}})_{iz}$  (вектор **E** направлен вдоль оси **Z**) получается из (8) при перестановке индек-

сов ( $x \leftrightarrow z$ ). Таким образом, подстановка полученных выражений в (6) позволяет расширить применимость уравнения Лорентц–Лоренца на случай анизотропии электронной поляризуемости ионов, входящих в состав кристалла.

# 2. Расчет поляризуемости ионов О<sup>2-</sup> в кристалле LiNbO<sub>3</sub>

Отметим существенное отличие в подходах к расчету поляризуемости, использованных в [2,3]. Согласно [3], все ионы структуры рассматриваются как независимые, с игнорированием перекрывания электронных оболочек ионов  $O^{2-}$  и Nb<sup>5+</sup>. В [2] определяется поляризуемость кластера (NbO<sub>3</sub>)<sup>-</sup>, рассматриваемого как точечный заряд, что, вероятно, более корректно, но менее информативно. Альтернативой представляется рассмотрение поляризуемости коротких (0.1878 nm) связей (Nb–O) как суммы поляризуемостей ионов Nb<sup>5+</sup> и O<sup>2-</sup>, определяемых независимо. Принципиальным при этом является то, что в расчете структурных сумм должны опускаться диполь-дипольные взаимодействия между ионами в коротких связях (Nb–O).

В дальнейших расчетах предполагалось, что поляризуемость ионов Li<sup>+</sup> изотропна и равна  $0.032 \cdot 10^{-3}$  nm<sup>3</sup> [2]. Поляризуемость ионов Nb<sup>5+</sup>  $\alpha_{\rm Nb}$  также полагалась изотропной и варьировалась в широких пределах относительно табличного значения  $0.22 \cdot 10^{-3}$  nm<sup>3</sup> [5].



**Рис. 1.** Зависимости главных значений тензора электронной поляризуемости ионов  $O^{2-} \alpha_{11}$  и  $\alpha_{33}$  в структуре LiNbO<sub>3</sub> от поляризуемости ионов Nb<sup>5+</sup>  $\alpha_{Nb}$ . *1* — расчет по ППИ. 2 — расчет по ППС.

Физика твердого тела, 2000, том 42, вып. 9

Из соображений симметрии очевидно, что одна из главных осей тензора поляризуемости ионов  $O^{2-}(3)$  должна совпадать с направлением связи (Nb–O) и, вероятно, тензор поляризуемости имеет аксиальную симметрию, так что  $\alpha_{11} = \alpha_{22} \neq \alpha_{33}$ , поэтому предполагалось, что вторая главная ось (2) лежит в кислородной плоскости. Все дальнейшие вычисления проводились с использованием данных о структуре кристаллов LiNbO<sub>3</sub> стехиометрического состава, полученных в [6]. Структурные суммы (7) рассчитывались при учете действия дипольных моментов, расположенных в сфере радиусом 12 nm с центром в точке нахождения рассматриваемого иона, что обеспечило сходимость с точностью лучше 1%.

В расчетах использовались значения показателей преломления кристаллов LiNbO<sub>3</sub> стехиометрического состава для дальней ИК-области  $n_x = 2.2032$ ;  $n_z = 2.1187$  [7]. Зависимости компонент тензора электронной поляризуемости ионов O<sup>2-</sup>  $\alpha_{11} = \alpha_{22}$  и  $\alpha_{33}$  от  $\alpha_{\rm Nb}$ , полученные как в приближении поляризуемости отдельных ионов (ППИ), так и в приближении поляризуемости связей (ППС) представлены на рис. 1. Как видно из рис. 1, как при использовании ППИ, так и ППС наблюдается анизотропия поляризуемости ионов O<sup>2-</sup>, но полученные результаты существенно различаются и требуют дополнительного анализа.

## 3. Анализ устойчивости структуры LiNbO<sub>3</sub>

Возможным методом проверки этих результатов является использование полученных данных для расчета локальных электрических полей  $E_{\rm loc}$  на структурнонеэквивалентных ионах решетки LiNbO<sub>3</sub> и проведение последующего анализа устойчивости структуры.

Кроме полученных зависимостей  $\alpha_{11}(\alpha_{Nb})$  и  $\alpha_{33}(\alpha_{Nb})$ для расчетов  $\mathbf{E}_{loc}$  были использованы следующие значения эффективных зарядов ионов решетки:  $q_{Li} = 0.98|e|$ ,  $q_{Nb} = 3.67|e|$ ,  $q_O = -1.55|e|$  (|e| – модуль заряда электрона), полученные в [8] методом ЛКАО. Расчет дипольного вклада в  $\mathbf{E}_{loc}$  проводился итерационным методом (4 итерации), расчет ионного вклада — по методу, предложенному в [9].

Зависимости *z*-компоненты напряженности локального электрического поля  $E_z$  на ионах O<sup>2-</sup>, Li<sup>+</sup> и Nb<sup>5+</sup>, а также одной из компонент тензора градиента электрического поля на ионе Nb<sup>5+</sup>  $V_{zz}$  (Nb) от  $\alpha_{\rm Nb}$  приведены на рис. 2 и 3.

Поскольку ион Nb<sup>5+</sup> в первом приближении можно рассматривать как сферически симметричный, уравнение баланса сил, действующих на него, записывается в виде

$$q_{\rm Nb}E_z(\rm Nb) + p_z(\rm Nb)V_{zz}(\rm Nb) + F_z(\rm Nb) = 0, \qquad (9$$

где  $E_z(Nb)$  — *z*-компонента  $E_{loc}$  на ионе Nb<sup>5+</sup>,  $p_z(Nb)$  — *z*-компонента его дипольного момента,  $F_z(Nb)$  — результирующая сила отталкивания в октаэдре NbO<sub>6</sub>. Уравнение баланса сил, действующих на ион Li<sup>+</sup>, имеет аналогичный вид.



**Рис. 2.** Зависимости *z*-компоненты локального электрического поля  $E_z$  на ионах Li<sup>+</sup> и O<sup>2-</sup> от  $\alpha_{\rm Nb}$ . *1* — расчет по ППИ. 2 — расчет по ППС.



**Рис. 3.** Зависимости *z*-компоненты локального электрического поля  $E_z$  на ионах Nb<sup>5+</sup> и  $V_{zz}$  (Nb) от  $\alpha_{Nb}$ . *I* — расчет по ППИ. 2 — расчет по ППС.

При расчетах устойчивости структуры кристалла обычно предполагается, что сила отталкивания, вызванная искажением и перекрытием электронных оболочек двух ионов, удовлетворяет представлению Борна– Майера

$$F_r = -A\rho^{-1} \exp(-r\rho^{-1}),$$
 (10)

где A и  $\rho$  — параметры, характеризующие данное взаимодействие; r — расстояние между ионами. Используя выражения (9), (10), можно определить связь между параметрами A и  $\rho$  для взаимодействий (Nb<sup>5+</sup>–O<sup>2–</sup>) и (Li<sup>+</sup>–O<sup>2–</sup>) при различных значениях  $\alpha_{\rm Nb}$ . Известные значения параметров рассматриваемых парных взаимодействий приведены в таблице.

Параметры потенциалов отталкивания

| Взаимо-           | A, eV |       |       | $ ho, { m nm}$ |        |        |
|-------------------|-------|-------|-------|----------------|--------|--------|
| действие          | Ι     | II    | III   | Ι              | II     | III    |
| $Li^{+}-O^{2-}$   | 262   | 862   |       | 0.0347         | 0.0260 |        |
| $Nb^{5+}-O^{2-}$  | 1796  | 1113  | 1333  | 0.0346         | 0.0388 | 0.0364 |
| $O^{2-} - O^{2-}$ | 22764 | 22764 | 22764 | 0.0149         | 0.0149 | 0.0149 |

I — согласно эмпирическим расчета в структурах  $Li_2O$  и Nb<sub>2</sub>O<sub>5</sub> [10]. II — согласно расчетам "ab initio" в структуре LiNbO<sub>3</sub> [10].

III — согласно расчетам "ab initio" в структуре KNbO<sub>3</sub> [1].

Расчеты зависимостей  $A(\rho)$  для взаимодействий (Nb<sup>5+</sup>-O<sup>2-</sup>) и (Li<sup>+</sup>-O<sup>2-</sup>), проведенные по приведенной схеме с использованием результатов расчета Е<sub>loc</sub> для любого из определенных выше наборов ( $\alpha_{\rm Nb}$ ,  $\alpha_{11}$ ,  $(\alpha_{33})$ , показали, что параметр A аномально велик по сравнению с приведенными в таблице. Следует отметить, что индуцированный электрический дипольный момент ионов кислорода ро в структуре LiNbO3 велик  $(|p_0| \cong 0.11|e|$  nm). Поскольку **р**<sub>0</sub> определяется в первую очередь сдвигом центра внешних электронных оболочек иона O<sup>2-</sup> относительно центра ядра, то при дипольобразующем заряде, равном 6|e|, это смещение составляет 0.018 nm, т.е. 1/10 длины короткой связи  $(Nb^{5+}-O^{2-})$ . Сила отталкивания  $F_r$  вызвана перекрытием именно внешних электронных оболочек ионов, поэтому в уравнении (10) под r необходимо понимать расстояние между центром иона металла и "центром" внешних электронных оболочек иона О<sup>2-</sup>.

С использованием такого приближения были проведены повторные расчеты зависимостей  $A(\rho)$  для взаимодействий (Nb<sup>5+</sup>–O<sup>2–</sup>) и (Li<sup>+</sup>–O<sup>2–</sup>) при различных значениях  $\alpha_{\rm Nb}$ , которые приводятся на рис. 4 и 5. Там же представлены данные из таблицы. Несмотря на очевидную упрощенность использованного подхода, при  $\alpha_{\rm Nb} = 0.05 \cdot 10^{-3} \, {\rm nm}^3$  (расчет по ППС) наблюдается вполне удовлетворительное соответствие с параметрами, рассчитанными из первых принципов [10,11].

Проведение аналогичных расчетов для взаимодействия (O<sup>2-</sup>–O<sup>2-</sup>) не представляется возможным, так как внешние электронные оболочки ионов O<sup>2-</sup> не являются сферически симметричными.



**Рис. 4.** Зависимости  $A(\rho)$  для взаимодействия (Nb<sup>5+</sup>–O<sup>2-</sup>):  $I - \alpha_{\rm Nb} = 0$ ;  $2 - \alpha_{\rm Nb} = 0.10$ , ППИ;  $3 - \alpha_{\rm Nb} = 0.20$ , ППИ. Зависимости, рассчитанные по ППС для  $\alpha_{\rm Nb} = 0.05$  и  $0.10 \cdot 10^{-3}$  nm<sup>3</sup>, идентичны *I*. Данные таблицы обозначены светлыми кружками.



Рис. 5. Зависимости  $A(\rho)$  для взаимодействия (Li<sup>+</sup>-O<sup>2-</sup>).  $I - \alpha_{\rm Nb} = 0; 2 - \alpha_{\rm Nb} = 0.10, \Pi\Pi H; 3 - \alpha_{\rm Nb} = 0.20, \Pi\Pi H;$  $4 - \alpha_{\rm Nb} = 0.05, \Pi\Pi C; 5 - \alpha_{\rm Nb} = 0.10, \Pi\Pi C.$  Данные таблицы обозначены светлыми кружками.

Отметим также, что значение спонтанной поляризации  $P_s$ , рассчитанное с использованием данных, полученных в ППС при  $\alpha_{\rm Nb} = 0.05 \cdot 10^{-3} \, {\rm nm}^3$ , равно  $0.77 \, {\rm C} \cdot {\rm m}^{-2}$  и достаточно близко к экспериментальному значению  $P_s$  кристалла LiNbO<sub>3</sub>.

Таким образом, при расчете электронной поляризуемости ионов  $O^{-2}$  в кислородно-октаэдрических сегнетоэлектриках необходимо учитывать характер связей металл-кислород и, как следствие, возможную анизотропию поляризуемости.

Обобщая изложенные выше результаты, можно полагать, что электронная поляризуемость ионов Nb<sup>5+</sup> в структуре LiNbO<sub>3</sub> имеет значение  $0.05 \cdot 10^{-3}$  nm<sup>3</sup>, а компоненты тензора электронной поляризуемости ионов O<sup>2-</sup>  $\alpha_{11} = \alpha_{22} = 1.97 \cdot 10^{-3}$  и  $\alpha_{33} = 2.86 \cdot 10^{-3}$  nm<sup>3</sup>.

Учет возможностей анизотропии поляризуемости ионов Nb<sup>5+</sup>, а также проведение следующих итераций при расчете поля, создаваемого световой волной, вероятно, позволит несколько уточнить значения компонент тензора электронной поляризуемости ионов  $O^{2-}$ .

#### Список литературы

- B.A. Luti, I.G. Tironi, W.F. van Gunsteren. J. Chem. Phys. 103, 3014 (1995).
- [2] N. Ramesh, R. Ethiraj. J. Mater. Sci. Lett. 13, 757 (1994).
- [3] W. Kinase, K. Harada, H. Yagi, M. Inoue, M. Tashiro, S. Kashivakura, H. Takei. J. Korian Phys. Soc. 32, S137 (1998).
- [4] М. Лайнс, А. Гласс. Сегнетоэлектрики и родственные им материалы. Мир, М. (1981). 736 с.
- [5] M. Levaloic. G. Allais. Phys. Stat. Sol. (a) 40, 181 (1977).
- [6] N. Iyi, K. Kitamura, F. Isumi, J.K. Jamamoto, T. Hayashi, H. Asano, S. Kimira. J. Solid. Stat. Chem. 101, 340 (1992).
- [7] U. Schlarb, K. Betzler. J. Appl. Phys. 73, 7, 3472 (1993).
- [8] W.Y. Ching, Zong-Quan Gu, Yong-Nian Xu. Phys. Rev. B50, 3, 1992 (1994).
- [9] О.В. Яценко. Укр. фіз. журн. 44, 3, 381 (1999).
- [10] H. Donnerberg, S.M. Tomlinson, C.R.A. Catlow, O.F. Shirmer. Phys. Rev. B40, 17, 11909 (1989).
- [11] H. Donnerberg. Phys. Rev. B50, 1, 9053 (1994).