Эффективное сечение возбуждения и время жизни ионов Er³⁺ в светодиодах на основе Si:Er, полученных методом сублимационной молекулярно-лучевой эпитаксии

© Д.Ю. Ремизов, В.Б. Шмагин, А.В. Антонов, В.П. Кузнецов, З.Ф. Красильник

Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

E-mail: remizov@ipm.sci-nnov.ru

Методом сублимационной молекулярно-лучевой эпитаксии получены электролюминесцентные диодные структуры на основе Si:Er, эффективно излучающие в диапазоне $1.5\,\mu$ m в режиме пробоя p-n-перехода при комнатной температуре. Для структур, излучающих в режиме смешанного пробоя и обнаруживающих максимальные интенсивность и эффективность возбуждения электролюминесценции ионов Er^{3+} , определены эффективное сечение возбуждения ионов Er^{3+} горячими носителями, разогреваемыми электрическим полем обратно смещенного p-n-перехода, и время жизни ионов Er^{3+} в первом возбужденном состоянии ${}^{4}I_{13/2}$.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (№ 02-02-16773, 04-02-17120), INTAS (N 03-51-6468).

Сублимационная молекулярно-лучевая эпитаксия (СМЛЭ), позволяющая удачно сочетать высокую скорость роста с кристаллическим совершенством выращиваемых слоев [1], зарекомендовала себя в последние годы как оригинальный и весьма перспективный метод получения светоизлучающих структур на основе кремния, легированного эрбием. Методом СМЛЭ на основе Si:Er получены однородно легированные светоизлучающие структуры с толщиной слоя Si:Er до 4 µm, многослойные периодические структуры ... Si/Si: Er/Si ..., обнаруживающие высокую квантовую эффективность и интенсивную фотолюминесценцию в диапазоне $\lambda \sim 1.5 \,\mu m$, электролюминесцентные диодные структуры, эффективно излучающие в режиме пробоя p-n-перехода при комнатной температуре [2–5].

Ранее на примере серии светоизлучающих диодов Si: Er/Si, полученных методом СМЛЭ, мы исследовали влияние механизма пробоя области пространственного заряда (ОПЗ) на электролюминесцентные свойства диода и показали, что диоды, работающие в режиме пробоя, близком к смешанному $(U_{\rm br}^{77} \approx U_{\rm br}^{300})$, где $U_{\rm br}^{77}$ и $U_{\rm br}^{300}$ — напряжения пробоя при температурах 77 и 300 К соответственно), проявляют максимальные интенсивность и эффективность возбуждения электролюминесценции (ЭЛ) ионов Er³⁺ при комнатной температуре в отличие от диодов, работающих в режимах ярко выраженного туннельного $(U_{\rm br}^{77}>U_{\rm br}^{300})$ или лавинного $(U_{\rm br}^{77} < U_{\rm br}^{300})$ пробоя [5]. В настоящей работе приведены первые результаты исследования кинетики нарастания интенсивности ЭЛ ионов Er³⁺ в СМЛЭ-диодах, работающих в режиме пробоя, близком к смешанному с незначительным преобладанием туннельной компоненты в токе пробоя, определены эффективное сечение возбуждения и время жизни ионов Er³⁺ в первом возбужденном состоянии ${}^{4}I_{13/2}$.

1. Методика эксперимента

Светоизлучающие диодные структуры, исследованные в настоящей работе, выращены методом СМЛЭ на подложках *p*-Si:В с ориентацией (100) и удельным сопротивлением $15 \Omega \cdot \text{сm}$ с подслоем p^+ -Si толщиной $0.1 \mu \text{m}$ и концентрацией носителей $5 \cdot 10^{18} \text{ cm}^{-3}$. Толщина слоя *n*-Si:Er составляла $\sim 1 \mu \text{m}$, концентрация носителей $\sim (4-7) \cdot 10^{17} \text{ cm}^{-3}$, температура роста $\sim 520^{\circ}$ С, концентрация Er $\sim (1-2) \cdot 10^{18} \text{ cm}^{-3}$. Светодиоды изготавливались по стандартной меза-технологии, площадь мезы составляла 2.5 mm^2 , 70% ее площади было свободно для выхода излучения.

Спектры ЭЛ регистрировались с помощью дифракционного монохроматора МДР-23 и ИК-фотоприемника InGaAs, охлаждаемого до температуры жидкого азота, в диапазоне 1.0-1.6 µm с разрешением 6 nm. Для возбуждения и регистрации спектров ЭЛ использовались импульсная модуляция тока накачки (длительность импульса 4 ms, частота повторения ~ 40 Hz, амплитуда до 500 mA) и методика синхронного накопления сигнала. Временные измерения проводились с использованием цифрового осциллографа BORDO 110 с полосой пропускания 0-200 MHz и более быстрого ИК-фотоприемника InGaAs с временем отклика $\sim 15 \,\mu$ s, работающего при комнатной температуре. Полоса пропускания оптического тракта при проведении временных измерений формировалась с коротковолновой стороны оптическим интерференционным фильтром с полосой пропускания 1.5-2.5 µm, с длинноволновой стороны — полосой пропускания фотоприемника InGaAs. Вольт-амперные характеристики (ВАХ) диодов измерялись в импульсном режиме. Напряжение пробоя U_{br} определялось экстраполяцией прямолинейного участка обратной ветви ВАХ до пересечения с осью напряжений.

Результаты эксперимента и их обсуждение

На рис. 1 и 2 приведены ВАХ и спектр ЭЛ одного из СМЛЭ-диодов. Напряжения пробоя составляли $U_{\rm br}^{300} \approx 5.0 \,{\rm V}$ и $U_{\rm br}^{77} \approx 6.6 \,{\rm V}$, что дает нам основание констатировать механизм пробоя, близкий к смешанному со слабым преобладанием туннельной компоненты в токе пробоя. Разный наклон обратных ветвей ВАХ диода при T = 77 и 300 К обусловлен температурной зависимостью подвижности носителей в подложке. Спектр ЭЛ типичен для диодов со смешанным характером пробоя и представлен достаточно узкой линией эрбиевой ЭЛ (переход ${}^4I_{13/2} \to {}^4I_{15/2}$ в 4f-оболочке иона ${\rm Er}^{3+}$) и широкой полосой так называемой "горячей" ЭЛ, представляющей собой внутризонную излучательную релаксацию носителей, разогреваемых в электрическом поле ОПЗ [6]. Сравнение спектров ЭЛ, записанных с использованием и без использования оптического фильтра, показывает, что фильтр эффективно вырезает полосу горячей ЭЛ. Применение фильтра позволило нам при проведении временных измерений отказаться от монохроматора и тем самым заметно увеличить отношение сигнал/шум в регистрируемом сигнале.

Эффективное сечение возбуждения и время жизни ионов Er³⁺ в возбужденном состоянии определялись из измерений кинетики нарастания интенсивности ЭЛ ионов Er³⁺ при импульсной модуляции тока накачки. В рамках двухуровневой модели уравнение баланса (1), определяющее процессы возбуждения и девозбуждения

Рис. 1. Вольт-амперные характеристики СМЛЭ-диода Si: Er/Si при температурах 77 и 300 К. Пунктирные линии — экстраполяция прямолинейных участков обратных ветвей ВАХ до пересечения их с осью напряжений. Стрелками показаны напряжения пробоя.

Рис. 2. Спектры электролюминесценции СМЛЭ-диода Si: Er/Si, зарегистрированные в режиме пробоя *p*-*n*-перехода с использованием (1) и без использования (2) оптического фильтра. Температура 300 К. Плотность тока накачки 8 А/ст². Указана идентификация перехода в 4*f*-оболочке иона Er³⁺.

ионов Er^{3+} , и его решение (2), описывающее нарастание интенсивности ЭЛ при включении тока накачки, могут быть записаны в следующем виде [7]:

$$\frac{dN^*}{dt} = \frac{\sigma j}{q} \left(N - N^* \right) - \frac{N^*}{\tau},\tag{1}$$

$$N^* = N \frac{\sigma \tau j/q}{1 + \sigma \tau j/q} \left[1 - \exp\left(-\frac{t}{\tau_{\text{on}}}\right) \right], \qquad (2)$$

где N и N^{*} — полная концентрация ионов Er^{3+} и их концентрация в возбужденном состоянии ${}^{4}I_{13/2}$, σ — эффективное сечение возбуждения Er^{3+} , τ — время жизни Er^{3+} в возбужденном состоянии, j — плотность тока накачки, q — заряд электрона, τ_{on} — время нарастания ЭЛ, которое определяется выражением

$$\frac{1}{\tau_{\rm on}} = \frac{\sigma j}{q} + \frac{1}{\tau}.$$
(3)

Поскольку интенсивность ЭЛ ионов эрбия EL ~ $N^*/\tau_{\rm rad}$, где $\tau_{\rm rad}$ — излучательное время жизни ионов Er³⁺ в возбужденном состоянии, выражение (2) может быть записано в виде более удобном для описания результатов кинетических измерений

$$EL = EL_{\max} \frac{\sigma \tau j/q}{1 + \sigma \tau j/q} \left[1 - \exp\left(-\frac{t}{\tau_{on}}\right) \right], \qquad (4)$$

где EL_{max} — максимальная интенсивность ЭЛ, соответствующая переводу всех ионов Er^{3+} в возбужденное состояние. Зависимость установившейся интенсивности

Рис. 3. Кривые нарастания ЭЛ при включении тока накачки, нормированные на установившееся значение интенсивности ЭЛ. Температура 300 К. Около кривых указаны значения плотности тока накачки (в А/ст²).

эрбиевой ЭЛ (при $t\to\infty)$ от плотности тока накачки имеет вид

$$EL = EL_{\max} \frac{\sigma \tau j/q}{1 + \sigma \tau j/q}.$$
 (5)

На рис. З приведены кривые нарастания EL(t) при различной плотности тока накачки, нормированные на установившееся значение интенсивности ЭЛ $EL(t \to \infty)$. Видно, что в соответствии с выражением (3) время нарастания τ_{on} уменьшается с ростом плотности тока накачки. Для теоретического описания кривых нарастания EL(t) мы использовали следующее выражение:

$$\operatorname{EL}(t) = A_0 + A_1 \left[1 - \exp\left(-\frac{t}{\tau_1}\right) \right] + A_2 \left[1 - \exp\left(-\frac{t}{\tau_2}\right) \right].$$
(6)

Здесь первое слагаемое — постоянная составляющая, определяемая схемой формирования сигнала; второе слагаемое описывает нарастание интенсивности горячей ЭЛ, третье — нарастание эрбиевой ЭЛ. Поскольку время нарастания горячей ЭЛ ~ 200 ns [8], постоянная τ_1 в наших экспериментах определяется временем отклика приемника и составляет величину ~ 15 μ s. Исключение фильтра из оптической схемы эксперимента не меняло времен нарастания τ_1 и τ_2 , но изменяло соотношение амплитуд A_1 и A_2 в сторону увеличения амплитуды быстрой компоненты A_1 , что подтверждает наше предположение о том, что быстрая компонента в кривой нарастания EL(t) соответствует нарастанию интенсивности горячей ЭЛ.

На рис. 4 приведена зависимость обратного времени нарастания ЭЛ ионов Er³⁺ от плотности тока накачки. Зависимость линейна. Используя выражение (3) для

описания экспериментальных данных, получаем следующие значения для эффективного сечения возбуждения и времени жизни: $\sigma = 1.4 \cdot 10^{-16} \, \mathrm{cm}^2$, $\tau = 540 \, \mu \mathrm{s}$.

Произведение $\sigma \tau$ эффективного сечения возбуждения и времени жизни возбужденного состояния иона Er^{3+} может быть независимо определено из измерений зависимости стационарной (установившейся) интенсивности эрбиевой ЭЛ от плотности тока накачки. На рис. 5 для того же диода приведена зависимость ин-

Рис. 4. Зависимость обратного времени нарастания ЭЛ ионов Er^{3+} от плотности тока накачки. Точки — эксперимент, прямая линия — описание данных эксперимента выражением (3).

Рис. 5. Зависимость интенсивности ЭЛ ионов Er³⁺ от плотности тока накачки. Точки — эксперимент, сплошная кривая описание данных эксперимента выражением (5).

тенсивности эрбиевой ЭЛ от плотности тока накачки и описание ее выражением (5). Данные эксперимента хорошо описываются выражением (5), это позволило оценить величину произведения $\sigma \tau = 6.9 \cdot 10^{-20} \text{ cm}^2 \cdot \text{s}$. Отметим хорошее согласие полученного результата с данными по кинетике: прямое перемножение величин σ и τ , определенных из кинетических измерений, дает $\sigma \tau = 7.6 \cdot 10^{-20} \text{ cm}^2 \cdot \text{s}$.

Таким образом, ЭЛ-диоды на основе Si:Er со смешанным или близким к смешанному характером пробоя ОПЗ и ударным механизмом возбуждения ионов Er^{3+} , полученные методом СМЛЭ, по эффективности возбуждения эрбиевой ЭЛ незначительно уступают имплантационным ЭЛ-диодам с лавинным характером пробоя $(\sigma = 2.3 \cdot 10^{-16} \text{ cm}^2, \tau = 380 \,\mu \text{s}$ [9]), что соответствует ранее высказанному утверждению об увеличении эффективности возбуждения эрбиевой ЭЛ по мере усиления лавинной компоненты в токе пробоя диода [5], и заметно превосходят ЭЛ-диоды с туннельным характером пробоя как по сечению возбуждения, так и по времени жизни возбужденного состояния ($\sigma = 6 \cdot 10^{-17} \, \mathrm{cm}^2$, $au = 100\,\mu {
m s}$ [7]). Меньшее время жизни ${
m Er}^{3+}$ в туннельных диодах вызвано, по-видимому, более высоким уровнем легирования (по сравнению с лавинными и смешанными диодами) и, следователно, большей концентрацией дефектов.

Список литературы

- [1] В.П. Кузнецов, Р.А. Рубцова. ФТП 34, 5, 519 (2000).
- [2] B. Andreev, V. Chalkov, O. Gusev, A. Emel'yanov, Z. Krasil'nik, V. Kuznetsov, P. Pak, V. Shabanov, V. Shengurov, V. Shmagin, N. Sobolev, M. Stepikhova, S. Svetlov. Nanotechnology 13, *1*, 97 (2002).
- [3] Z.F. Krasil'nik, V.Ya. Aleshkin, B.A. Andreev, O.B. Gusev, W. Jantsch, L.V. Krasilnikova, D.I. Kryzhkov, V.P. Kuznetsov, V.G. Shengurov, V.B. Shmagin, N.A. Sobolev, M.V. Stepikhova, A.N. Yablonsky. In: Towards the First Silicon Laser / Ed. L. Pavesi et al. Kluwer Academic Publ. (2003). P. 445.
- [4] Б.А. Андреев, Т. Грегоркевич, З.Ф. Красильник, В.П. Кузнецов, Д.И. Курицын, М.В. Степихова, В.Г. Шенгуров, В.Б. Шмагин, А.Н. Яблонский, В. Янч. Изв. РАН. Сер. физ. 67, 2, 273 (2003).
- [5] В.Б. Шмагин, Д.Ю. Ремизов, З.Ф. Красильник, В.П. Кузнецов, В.Н. Шабанов, Л.В. Красильникова, Д.И. Крыжков, М.Н. Дроздов. ФТТ 46, 1, 110 (2004).
- [6] F.G. Chynoweth, K.G. McKay. Phys. Rev. 102, 2, 369 (1956).
- [7] S. Coffa, G. Franzo, F. Priolo. Appl. Phys. Lett. 69, 14, 2077 (1996).
- [8] W.-X. Ni, C.-X. Du, K.B. Joelsson, G. Pozina, G.V. Hansson. J. Lumin. 80, 1–4, 309 (1999).
- [9] N.A. Sobolev, Yu.A. Nikolaev, A.M. Emel'yanov, K.F. Shtel'makh, P.E. Khakuashev, M.A. Trishhenkov. J. Lumin. 80, 1-4, 315 (1999).