Сверхлюминесценция Er³⁺ в матрице аморфного кремния

© В.И. Емельянов, Б.В. Каменев, П.К. Кашкаров, Е.И. Константинова, В.Ю. Тимошенко, Е.И. Теруков*, М.С. Бреслер*, О.Б. Гусев*

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия *Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: boris@ofme.phys.msu.su E-mail: Eug.terukov@pop.ioffe.rssi.ru

(Поступила в Редакцию 15 декабря 1999 г.)

Исследована фотолюминесценция ионов Er³⁺ в тонких пленках аморфного кремния в условиях интенсивной накачки. Обнаружен сверхлинейный рост амплитуды и укорочение времен спада фотолюминесценции при интенсивности накачки свыше 200 kW/cm². Полученные данные объяснены пороговым "включением" механизма сверхлюминесценции.

Данная работа финансировалась в рамках проекта INCO-COPERNICUS № 977048-SIER, гранта РФФИ № 99-02-16664, ГНТП Миннауки РФ "Поверхностные атомные структуры" (проект № 4.1.99 и 1С91.1ЛФ020).

Актуальной задачей современной физики полупроводников является поиск путей создания светоизлучающих приборов на основе кремния. Как известно [1], непрямая структура энергетических зон в этом материале обусловливает малую вероятность электронных переходов с испусканием фотона. Принципиально возможны два подхода. В первом из них спектр электронных состояний Si модифицируется за счет формирования наноструктур. Эти условия реализуются, в частности, в слоях пористого кремния [2]. Во втором подходе в матрицу кремния вводятся активаторы люминесценции, например, ионы редкоземельных элементов [3]. Весьма привлекательными оптическими свойствами обладает трехвалентный ион Er³⁺, излучение которого происходит за счет переходов во внутренней 4f оболочке и характеризуется длиной волны $\lambda = 1.54 \,\mu$ m. Последняя соответствует максимуму пропускания кварцевых волоконных световодов [4].

Исследователями были выполнены многочисленные попытки внедрения ионов Er^{3+} в кристаллический кремний (см., например, [5]). Однако наблюдаемая фотолюминесценция (ФЛ) ионов Er^{3+} была достаточно эффективной лишь при азотных температурах, и нагрев образцов до T = 300 К вызывал практически полное гашение ФЛ [6,7].

Существенно лучшие результаты были достигнуты при введении ионов Er^{3+} в матрицу аморфного гидрогенизированного кремния *a*-Si:H [8]: эффективная люминесценция на длине волны $\lambda = 1.54 \,\mu\mathrm{m}$ наблюдалась в таких образцах при комнатной температуре как при оптическом, так и при инжекционном возбуждении [9]. В [8] предложен механизм переноса энергии от неравновесных электронно-дырочных пар в *a*-Si:H к ионам Er^{3+} с последующим излучательным переходом.

В настоящей работе исследована внутрицентровая люминесценция ионов Er^{3+} , внедренных в аморфный гидрогенизированный кремний (*a*-Si:H(Er)), в условиях интенсивного фотовозбуждения с целью выяснения воз-

можности создания источников когерентного излучения. Обнаружен эффект порогового сверхлинейного возрастания интенсивности и уменьшения времени спада ФЛ, который трактуется как результат "включения" процессов вынужденного излучения (сверхлюминесценция).

1. Методика эксперимента

Детали технологии формирования образцов *a*-Si: H(Er) и последующего определения содержания в них водорода, кислорода и эрбия подробно описаны в [10]. Отметим лишь, что использовалось совместное распыление кремниевой и эрбиевой мишеней с применением магнетронного разложения силана. Концентрации Ег и О составляли $2.5 \cdot 10^{20}$ и $9.8 \cdot 10^{19}$ сm⁻³ соответственно. Структура образцов представляла собой пленку *a*-Si: H(Er) толщиной $h \sim 1 \mu$ m, напыленную на кварцевую подложку.

Образцы находились в вакууме 10^{-2} Ра и перед началом измерений прогревались при T = 520 К в течение 20 min. ФЛ наблюдалась либо при T = 300 К в зависимости от интенсивности возбуждения I_{exc} , либо в зависимости от температуры при фиксированных значениях I_{exc} .

Рис. 1. Схема возбуждения ФЛ.

Для возбуждения ФЛ использовались два импульснопериодических лазера: на парах меди ($\lambda_1 = 511$ nm, $\tau_1 = 20$ ns, энергия одного импульса $E_1 \leq 25 \,\mu$ J, частота следования импульсов $\nu_1 = 12$ kHz) и азотного ($\lambda_2 = 337$ nm, $\tau_2 = 10$ ns, $E_2 \leq 10 \,\mu$ J, $\nu_2 = 20-100$ Hz). Излучение каждого лазера могло быть сфокусировано на образце в пятно диаметром ~ 0.5 mm (рис. 1), при этом пиковая интенсивность $I_{\rm exc}$ достигала 400–500 kW/cm². Подчеркнем, что поскольку $\nu_2 \ll \nu_1$, то средняя интенсивность излучения лазера на парах меди превосходила эту величину для азотного лазера более чем на 2 порядка величины.

ФЛ регистрировалась автоматизированной установкой СДЛ-2, дополненной Ge-фотоприемником с постоянной времени $\sim 1 \, \mu$ s и стробоскопическим осциллографом C-7-12.

2. Экспериментальные результаты

В исследуемых образцах *a*-Si: H(Er) при T = 300 К наблюдалась стабильная во времени ФЛ со спектром, типичным для Ег в кремниевой матрице. Так, приведенная на рис. 2 зависимость амплитуды ФЛ ($I_{\rm PL}$) от λ характеризуется наличием двух максимумов, что в литературе обычно связывается с расщеплением основного состояния иона ${\rm Er}^{3+}$ в кристаллическом поле матрицы [11]. Форма спектра практически не изменялась при переходе от возбуждения с длиной волны λ_1 и λ_2 . Релаксация ФЛ удовлетворительно аппроксимировалась экспоненциальным законом с эффективным временем $\tau_{\rm PL} \sim 8 \,\mu$ s для $I_{\rm exc} < 50 \, {\rm kW/cm}^2$.

При достаточно интенсивной лазерной накачке ФЛ существенную роль начинает играть тепловой фактор, поэтому прежде всего авторы измерили зависимость I_{PL} и τ_{PL} от температуры на образцах (рис. 3). В соответствии с литературными данными [6,7], гашение ФЛ регистрируется уже при T > 100 K, однако уменьшение τ_{PL} фиксируется при более высоких T.

Рис. 2. Спектр амплитуды Φ Л при T = 300 К и $I_{exc} = 50$ kW/cm².

1373

Рис. 3. Зависимость амплитуды I_{PL} и времени релаксации τ_{PL} ФЛ от температуры при $I_{exc} = 50 \text{ kW/cm}^2$.

Рис. 4. Зависимость амплитуды I_{PL} и времени τ_{PL} релаксации ФЛ от интенсивности накачки при возбуждении излучением лазера на парах меди. T = 300 K.

Зависимости I_{PL} и τ_{PL} от I_{exc} при возбуждении излучением лазера на парах меди приведены на рис. 4. Как видно из рисунка, величина I_{PL} пропорциональна I_{exc} при малых уровнях накачки и выходит на насыщение при $I_{exc} \sim 50 \, \text{kW/cm}^2$. Аналогичные результаты наблюдались при возбуждении ФЛ излучением непрерывных лазеров [12]. Однако в отличие от данных работы [12] при увеличении I_{exc} свыше 100 kW/cm² за областью насыщения наблюдается сверхлинейный рост I_{PL} .

Весьма интересно изменяются времена релаксации ФЛ при увеличении $I_{\rm exc}$. Как видно из рис. 4, в области линейного роста и насыщения $I_{\rm PL}$ величина $\tau_{\rm PL}$ практически постоянна. Однако при $I_{\rm exc} > 100 \, {\rm kW/cm^2}$ фиксируется резкое падение времен $\tau_{\rm PL}$ (рис. 4).

Сходные зависимости $I_{PL}(I_{exc})$ и $\tau_{PL}(I_{exc})$ были получены и при возбуждении импульсами азотного лазера за исключением отсутствия в этом случае участка с насыщением (рис. 5). Напомним, что средняя интенсивность накачки, определяющая тепловые эффекты, для

Рис. 5. Зависимость амплитуды $I_{\rm PL}$ и времени $\tau_{\rm PL}$ релаксации ФЛ от интенсивности накачки при возбуждении излучением азотного лазера. T = 300 К.

азотного лазера на 2 порядка меньше, чем для лазера на парах меди. Сравнивая рис. 3 и 4, можно предположить, что при использовании последнего горизонтальный участок зависимости $I_{PL}(I_{exc})$ обусловлен нагревом образца. По-видимому, природа насыщения указанной зависимости в случае применения непрерывного лазера [12] аналогична.

3. Обсуждение экспериментальных результатов

Сверхлинейный рост амплитуды ФЛ, сопровождающийся одновременным сокращением $\tau_{\rm PL}$, связан, на наш взгляд, с пороговым "включением" усиления ФЛ за счет вынужденных процессов [13]. При определенном уровне возбуждения реализуется инверсная населенность уровней ${}^4I_{13/2}$ и ${}^4I_{15/2}$ ионов эрбия, и среда обладает оптическим усилением.

Будем моделировать объем среды, занимаемый активными ионами Er^{3+} , вытянутым вдоль оси x (рис. 1) слоем толщиной h и длиной L, заполненным двухуровневыми атомами с концентрацией n. Пусть a — верхний, а b — нижний энергетические уровни рабочего перехода атома и ω_{ab} — частота перехода между ними. Поскольку диэлектрическая проницаемость слоя ($\varepsilon' \approx 12$) больше диэлектрической проницаемости подложки ($\varepsilon'_s \approx 2.2$), а сверху он граничит с вакуумом и h порядка длины волны излучения, то слой образует диэлектрический плоский волновод [14]. Для низших волноводных мод продольное волновое число $k \approx \omega \sqrt{\varepsilon'}/c$.

Зададим поле излучения внутри слоя в виде бегущей волны

$$E(x) = E_0(x, t) \exp(-i\omega t - kx) + \text{complex conjugate}, (1)$$

где $E_0(x,t)$ — медленная амплитуда поля, усредненная по поперечному сечению волновода. Уравнение для интенсивности излучения внутри волновода

 $(I_{\rm PL} = c^* \varepsilon' E_0^2/2\pi)$ имеет вид

$$\frac{\partial I_{\rm PL}}{\partial t} + c^* \frac{\partial I_{\rm PL}}{\partial x} = -4\pi \alpha'' \omega I_{\rm PL} + \left(\frac{\partial I_{\rm PL}}{\partial t}\right)_{sp}, \quad (2)$$

где $c^* = c/(\varepsilon')^{1/2}$ — скорость света в среде. Мнимая часть резонансной ($\omega = \omega_{ab}$) поляризуемости активных ионов

$$\alpha'' = -\frac{nd_{ab}^2}{\hbar T_2^{-1}} D \equiv -\alpha_0'' D, \qquad (3)$$

где d_{ab} — матричный элемент перехода между рабочими уровнями, T_2 — время релаксации поляризации рабочей среды, $D = \rho_{aa} - \rho_{bb}$ — разность населенностей верхнего и нижнего уровней ($\rho_{aa} + \rho_{bb} = 1$), \hbar — постоянная Планка, n — концентрация активных ионов. Член $\sim \alpha''$ в (2) описывает вынужденное излучение, а источник спонтанного излучения задается формулой

$$\left(\frac{\partial I_{\rm PL}}{\partial t}\right)_{sp} = \frac{1}{2}c^*\hbar\omega nT_1^{-1}(D+1),\tag{4}$$

где *T*₁ — излучательное время жизни верхнего рабочего уровня.

Уравнение для разности населенностей при условии $T_2 \ll T_1$ имеет вид

$$\frac{\partial D}{\partial t} + T_1^{-1}(D+1) = -\frac{8\pi d_{ab}^2}{\hbar^2 T_2^{-1} c^*} I_{\rm PL} D.$$
(5)

В начальный момент времени t = 0 рабочий переход предполагается инвертированным, т. е. $D(t = 0) \equiv D(0)$, причем $0 \leq D(0) \leq 1$.

Система уравнений (2) и (5) описывает формирование импульса сверхлюминесценции в распределенной среде первоначально инвертированных двухуровневых атомов.

При условии, что $L \ll c^*T_1$, соотношение (2) можно заменить упрощенным уравнением

$$\frac{\partial I_{\rm PL}}{\partial t} + \gamma_E I_{\rm PL} = -4\pi \alpha'' \omega I_{\rm PL} + \left(\frac{\partial I_{\rm PL}}{\partial t}\right)_{sp}, \qquad (6)$$

где член с константой $\gamma_E = (1-R) \frac{c^*}{L}$ учитывает выход излучения за пределы рабочего объема. (1-R) эффективный коэффициент пропускания стенок "резонатора").

При условии $\gamma_E \gg T_1^{-1}$ из (6), с учетом (2) и (4), имеем в адиабатическом приближении

$$I_{\rm PL} = \frac{c^* \hbar \omega n T_1^{-1} (D+1)}{2\gamma_E (1-\beta D)} \equiv \frac{I_{sp}}{(1-\beta D)},$$
(7)

где коэффициент $\beta = 4\pi |\alpha_0''| \omega \gamma_E^{-1} > 0$, I_{sp} задает интенсивность спонтанной ФЛ в рабочем объеме. Формула (7) определяет превышение интенсивности ФЛ над уровнем спонтанной ФЛ, благодаря стимулированному излучению (сверхлюминесценция).

Подставляя (7) в (5), получаем уравнение кинетики разности населенности при сверхлюминесценции

$$\frac{\partial D}{\partial t} = -\frac{(D+1)}{T_1(1-\beta D)}.$$
(8)

Уравнение (8) совместно с (7) описывает кинетику интенсивности сверхлюминесценции.

Интегрирование (8) дает для времени затухания $\Phi \Pi \tau_{PL}$ (определенному как время, за которое начальное значение населенности верхнего уровня уменьшается в e раз) следующее выражение:

$$\tau_{\rm PL} = T_1 (1 - \beta D(0)). \tag{9}$$

Характерное значение начальной инверсии, при которой становится существенным процесс вынужденного излучения, можно оценить из условия $\beta D_{cr}(0) = 0.1$. В пренебрежении зависимостью *n* от интенсивности накачки (т. е. от D(0)) получаем оценку

$$D_{\rm cr}(0) = \frac{0.1 \cdot \hbar T_2^{-1} \gamma_E}{4\pi n d_{ab}^2 \omega}.$$
 (10)

Подставим в (10) известные числовые значения: $L = 5 \cdot 10^{-2} \text{ cm}, (\varepsilon')^{1/2} \sim 3.5$, тогда $c^* \sim 8.6 \cdot 10^9 \text{ cm/s}$ и $\gamma_E \sim 10^{10} \text{ s}^{-1}$; кроме этого, используем $n = 10^{20} \text{ cm}^{-3}$, $T_2 \sim 10^{-11} \text{ s}, \omega = 1.2 \cdot 10^{15} \text{ s}^{-1}$. Дипольный момент перехода, согласно [15], $d_{ab} = 5 \cdot 10^{-21}$ СГСЭ (запрещенный переход). Тогда из (10) имеем для характерной начальной инверсии, при которой начинается сверхлюминесценция: $D_{cr} \sim 10^{-2}$, что легко достигается в эксперименте.

Сопоставим результаты теоретического анализа с полученными в работе данными. Из сравнения соотношений (7) и (9) следует, что при n = const длительность импульса сверхлюминесценции уменьшается с ростом инверсии D(0) (т.е. с ростом I_{exc}) во столько же раз, во сколько возрастает амплитуда интенсивности излучения ионов Ег. Зависимости $I_{\text{PL}}(I_{\text{exc}})$ и $\tau_{\text{PL}}(I_{\text{exc}})$, приведенные на рис. 4 и 5, качественно согласуются с результатами расчета. Однако относительный рост интенсивности ФЛ количественно заметно больше, чем следует из сравнения формул (7) и (9) при n = const. Указанное расхождение, по-видимому, обусловлено тем, что при расчете использовались определенные упрощения, что должно повлиять на вид аналитических выражений (7) и (9).

В заключение отметим, что в работе исследованы процессы излучения ионов ${\rm Er}^{3+}$, внедренных в матрицу аморфного кремния, в условиях интенсивной накачки. Обнаружены пороговые сверхлинейный рост интенсивности $I_{\rm PL}$ и сокращение времени релаксации $\tau_{\rm PL} \Phi \Pi$ при плотности мощности возбуждения $\geq 200 \, {\rm kW/cm}^2$. Полученные данные качественно согласуются с результатами расчета, учитывающего усиление спонтанного излучения в изучаемой системе. Последнее свидетельствует о принципиальной возможности создания источников когерентного вынужденного излучения в тонких пленках a-Si: H $\langle {\rm Er} \rangle$.

Авторы выражают благодарность Б.П. Захарчене за поддержку настоящей работы и плодотворное обсуждение ее результатов.

Список литературы

- В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников. Наука, М. (1977).
- [2] L.T. Canham. Appl. Phys. Lett. 57, 1046 (1990).
- [3] G.S. Pomrenke, P.B. Klein, D.W. Langer. Rare Earth Doped Semiconductors. Mat. Res. Soc. Symp. Proc. Vol. 301. MRS, Pittsburgh (1993).
- [4] K. Iga, S. Kinoshita. Progress Technology for Semiconductors Lasers. Springer Ser. in Mater. Sci. Vol. 30. Springer-Verlag, Berlin (1996).
- [5] W. Jantsch, S. Lanzerstorfer, L. Palmetshofer, M. Stepikhova, H. Prier. J. Luminescence 80, 9 (1999).
- [6] F. Priolo, G. Franzo, S. Coffa, A. Polman, S. Libertino, R. Barklie, D.Carey. J. Appl. Phys. 78, 3874 (1995).
- [7] J.H. Shin, R. Serna, G.N. van den Hoven, A. Polman, W.G.J.H.M. van Sark, A.M. Vredenberg. Appl. Phys. Lett. 68, 997 (1996).
- [8] W. Fuhs, I. Ulber, G. Weiser, M.S. Bresler, O.B. Gusev, A.N. Kuznetsov, V.Kh. Kudoyarova, E.I. Terukov, I.N. Yassievich. Phys. Rev. B56, 9545 (1997).
- [9] O. Gusev, M. Bresler, A. Kuznetsov, V. Kudoyarova, P. Pak, E. Terukov, K. Tsendin, I. Yassievich, W. Fuhs, G. Weiser. J. Non-Cryst. Solids 227–230, 1164 (1998).
- [10] V. Marakhonov, N. Rogachev, J. Iskalov, J. Marakhonov, E. Terukov, V. Chelnokov. J. Non-Cryst. Solids 137–138, 1164 (1991).
- [11] H. Przybylinska, W. Jantsch, Yu. Suprun-Belevitch, M. Stepikova, L. Palmetshofer, G. Gendorfer, A. Kozanecki, R.J. Wilson, B.J. Sealy. Phys. Rev. 54, 2532 (1996).
- [12] M.S. Bresler, O.B. Gusev, V.Kh. Kudoyarova, A.N. Kuznetsov, P.E. Pak, E.I. Terukov, I.N. Yassievich, B.P. Zakharchenya, W. Fuhs, A. Sturm. Appl. Phys. Lett. 67, 3599 (1995).
- [13] A.V. Andreev, V.I. Emel'yanov, Yu.A. Il'inskii. Cooperative Effects in Optics. Ins. of Physics publishing, Bristol and Philadelphia (1993).
- [14] М.Б. Виноградова, О.В. Руденко, А.П. Сухороков. Теория волн. Наука, М. (1990).
- [15] I. Yassievich, M. Bresler, O. Gusev. J. Non-Cryst. Solids 226, 192 (1998).