Люминесценция примесных 3d- и 4f-ионов в различных кристаллических формах Al_2O_3

© А.Б. Кулинкин, С.П. Феофилов, Р.И. Захарченя

Физико-технический институт им. А.Ф.Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 11 октября 1999 г.)

Исследованы спектры ${}^{2}E-{}^{4}A_{2}$ люминесценции ионов Cr^{3+} в $Al_{2}O_{3}$ в процессе переходов между структурными формами $\gamma - \delta - \theta - \alpha$. Наблюдавшиеся спектральные линии приписаны ионам Cr^{3+} в этих формах, определенных методом рентгенофазового анализа. Измерены времена жизни возбужденных состояний Cr^{3+} в переходных формах $Al_{2}O_{3}$. Исследования спектров люминесценции $Al_{2}O_{3}$: Eu^{3+} показали, что ионы Eu^{3+} могут формировать регулярные центры только в α - $Al_{2}O_{3}$ и не образуют (в отличие от Cr^{3+}) таких центров в сравнительно упорядоченной θ - $Al_{2}O_{3}$.

Работа выполнена при поддержке гранта РФФИ (№ 99-02-18279) и программы "Физика твердотельных наноструктур".

Известно, что оксид алюминия в нормальных условиях может существовать в различных кристаллических формах (называемых также фазами). Эти формы принято обозначать греческими буквами $\alpha, \beta, \gamma, \delta, \eta, \kappa, \chi, \theta$. Наиболее хорошо изучена *а*-форма Al₂O₃ — корунд или сапфир. В то же время другие метастабильные кристаллические, так называемые переходные формы также представляют значительный интерес, так как многие из них используются на практике (адсорбенты, катализаторы, покрытия, абразивы), а *β*-Al₂O₃: Na является суперионным проводником. Все переходные формы Al₂O₃ обладают в той или иной степени разупорядоченной кристаллической решеткой и являются более сложными объектами, чем α -Al₂O₃ [1]. Структура всех этих различных форм может рассматриваться, как разупорядоченная и в различной степени искаженная структура шпинели. Шпинель AB_2O_4 , где $A = M^{2+}$, $B = Me^{3+}$ в элементарной ячейке имеет 32 иона О²⁻, представляющих собой плотнейшую кубическую упаковку и 24 катионных позиции, из которых 16 октаэдрические и 8 тетраэдрических. В случае переходных форм Al₂O₃ на элементарную ячейку приходится 21 1/3 иона Al³⁺, которые занимают возможные катионные позиции с различной степенью разупорядочения [1]. Такое различное распределение катионов по позициям наряду с деформацией кислородной подрешетки, приводящей к понижению ее симметрии, и обусловливает разнообразие переходных форм Al₂O₃. Переходы между кристаллическими формами Al₂O₃ происходят при определенных температурах и имеют необратимый характер. Структурные превращения Al₂O₃ зависят также от выбора начального материала [1].

Спектроскопия примесных редкоземельных ионов (RE) и ионов группы железа в диэлектриках позволяет получать информацию о структуре и динамических процессах в кристаллах. Спектры примесных ионов могут использоваться для определения фазового состава в различных диэлектрических материалах, в том числе Al₂O₃ [2]. Однако систематического исследования спектров редкоземельных ионов и ионов группы железа в различных формах Al_2O_3 не осуществлялось, следует упомянуть только работу [3], выполненную с низким спектральным разрешением. В нашей работе исследованы спектры и кинетика люминесценции примесных ионов Cr^{3+} , Eu^{3+} и Mn^{4+} в процессе структурных превращений в Al_2O_3 .

Проблема внедрения редкоземельных ионов в решетку корунда (в условиях большого несоответствия ионных радиусов) вызывает значительный интерес [4-9]. В большинстве работ исследовалось внедрение редкоземельных ионов в корунд при помощи ионной имплантации [4-6], имеется свидетельство и о применении более "стандартного" метода выращивания кристаллов [7]. При этом не всегда RE-ионы образуют в решетке корунда регулярные центры, дающие узкие линии в спектрах. В [8] проведены расчеты, на основании которых был сделан вывод о том, что резкоземельные ионы в корунде замещают ионы алюминия, причем RE-ионы сильно (на 0.5 А) смещены относительно положения, в котором находился A1³⁺. Согласно [8], смещение происходит влоль тригональной оси кристалла в направлении октаэдрической пустоты, не занятой ионом Al³⁺, и приводит к сильной деформации локальной структуры. В нашей работе [9] α -Al₂O₃: RE³⁺ был получен из приготовленного по "золь-гель"-технологии γ -Al₂O₃: RE³⁺ в результате серии структурных преврашений. Выяснение, на каком этапе структурных превращений Al₂O₃ ионы Eu³⁺ образуют регулярные центры — одна из целей настоящей работы.

1. Экспериментальная методика

В качестве начального материала использованы образцы высокопористого нанокристаллического прозрачного γ -Al₂O₃, полученного методом золь-гель-технологии. Получение такого γ -Al₂O₃ описано в [10,11]. В процессе золь-гель-синтеза в образцы вводилась малая (0.05–1 at.%) примесь редкоземельных ионов или ионов группы железа. Образцы затем отжигались в течение 1 часа при различных температурах T_{ann} на воздухе, кристаллическая структура определялась методом дифракции рентгеновских лучей. Спектры флуоресценции примесных ионов исследовались при помощи двойного решеточного монохроматора при T = 77 К при возбуждении Ar-лазером или Hg-лампой. Кинетика затухания люминесценции измерялась путем механической модуляции луча возбуждающего Ar-лазера и регистрации люминесценции с временным разрешением.

2. Экспериментальные результаты и их обсуждение

Спектры ${}^{2}E - {}^{4}A_{2}$ люминесценции ионов Cr³⁺ в процессе структурных превращений представлены на рис. 1. Указаны температуры отжига T_{ann} . Греческой буквой у каждого спектра указана преобладающая кристаллическая фаза в образце, отожженном при данной температуре, определенная по данным рентгеновского рассеяния. Спектр, соответствующий γ -Al₂O₃, описан в [12]. Наблюдается чрезвычайно сильное неоднородное уши-

Рис. 1. Спектры люминесценции $Al_2O_3: 0.05 at.\% Cr^{3+}$, отожженного при различных температурах. Указана температура отжига T_{ann} и преобладающая кристаллическая фаза в образце, определенная по данным рентгеновского рассеяния. Возбуждение Ar-лазером, $\lambda_{exc} = 514.5 \text{ nm}, T = 77 \text{ K}.$

Рис. 2. Затухание люминесценции $Al_2O_3: Cr^{3+}$, соответствующее различным линиям в спектрах рис. 1. Возбуждение Ar-лазером, $\lambda_{exc} = 514.5$ nm, T = 77 K. $a - \lambda = 686$ nm $(R_1$ -линия Cr^{3+} в θ -форме) $\tau_R = 12$ ms; $b - \lambda = 693.5$ nm $(R_1$ -линия Cr^{3+} в α -форме) $\tau_R = 5.8$ ms; $c - \lambda = 697.5$ nm; $d - \lambda = 710$ nm (R-линии Cr^{3+} и их вибронные крылья в разупорядоченных γ - и δ -формах).

рение (150 cm⁻¹) чисто электронного перехода ${}^{2}E - {}^{4}A_{2}$ (*R*-линия), маскирующее расщепление возбужденного ²Е-состояния, длинноволновая часть спектра соответствует вибронным переходам. Такие спектры характерны для ионов Cr³⁺ в сильном кристаллическом поле в разупорядоченном окружении: в разупорядоченных кристаллах [13] и стеклах [14]. В результате отжига спектры люминесценции радиально изменяются — появляются более узкие дублетные линии: сначала 682 и 686 nm, затем 692 и 693.5 nm. Отжиг при T_{ann} = 1200°С приводит к тому, что в спектре остается лишь второй дублет — известные линии хрома в рубине. Спектры, соответствующие T_{ann} = 980-1100°С, прямо демонстрируют сосуществование различных фаз в образцах. Действительно, одновременно наблюдаются как сильно неоднородно-уширенные спектры, так и узкие дублеты. Сопоставляя данные рентгеновского рассеяния со спектрами люминесценции, можно сделать вывод, что дублет 682 и 686 nm соответствует *R*-линиям (${}^{2}E-{}^{4}A_{2}$) Cr³⁺ в θ -Al₂O₃. Действительно, эта форма более упорядочена, чем γ и δ : в θ -Al₂O₃ упорядочена подрешетка ионов Al³⁺, занимающих тетраэдрические позиции [1]. Такое же отождествление было сделано в [2] для оксидных пленок на поверхности металла. Характерных особенностей, которые могли бы быть приписаны Cr³⁺ в δ -Al₂O₃ в спектрах не наблюдалось. Это, очевидно, обусловлено столь же сильной, как и у γ -Al₂O₃, разупорядоченностью δ -Al₂O₃. Действительно, сильное разупорядочение приводит к сильному неоднородному уширению и делает спектры Cr³⁺ в γ - и δ -формах неразличимыми.

На рис. 2 представлены кривые затухания люминесценции Cr^{3+} , отвечающие различным линиям в спектрах рис. 1. Люминесценция в линиях 682 и 686 nm затухает строго экспоненциально и соответствует радиационному времени жизни возбужденного ²*E*-состояния $\tau_R = 12$ ms. Такое затухание свидетельствует о большей упорядоченности матрицы, вмещающей ионы, ответственные за эти линии, и тем самым дает дополнительное подтверждение отнесению этих линий к ионам Cr³⁺ в θ-Al₂O₃. Люминесценция в области широкого неоднородно-уширенного спектра, принадлежащего сильно разупорядоченным уи б-формам, затухает неэкспоненциально, что соответствует вкладу центров с различными временами жизни ^{2}E -состояния. Для сравнения на рис. 2 приведено также затухание люминесценции в "рубиновых *R*-линиях" 692 и 693.5 nm ($\tau_R = 5.8 \text{ ms}$).

Особый интерес представляет спектроскопия Eu³⁺ в ходе структурных превращений. Действительно, ионный радиус Eu³⁺ (0.95 Å) значительно превышает ионный радиус Cr^{3+} (0.51 Å). Если в разупорядоченной γ -Al₂O₃, содержащей вакансии, внедрение Eu³⁺ не представляется затруднительным, то регулярные центры Eu^{3+} в α -Al₂O₃ (корунде) являются весьма необычным объектом. Тем не менее в [9] нами было показано, что путем отжига γ -Al₂O₃: Eu³⁺, полученного по золь-гель-технологии, может быть получен α -Al₂O₃: Eu³⁺, в котором Eu³⁺ образует регулярные центры одного типа, обладающие аксиальной симметрией. Весьма интересно, каким образом образуются Eu^{3+} -центры в α -Al₂O₃ в процессе отжига образцов и какие центры образует Eu³⁺ в сравнительно упорядоченной θ -Al₂O₃. На рис. 3 показаны спектры ${}^{5}D_{0} - {}^{7}F_{n}$ люминесценции образцов Al₂O₃: Eu³⁺, отожженных при разных температурах. Видно, как в процессе отжига вместо неоднородно-уширенного спектра γ -Al₂O₃: Eu³⁺ возникают узкие линии *α*-Al₂O₃: Eu³⁺. Состав образцов можно видеть по спектрам люминесценции Cr³⁺, некоторое количество которого также присутствует в образцах. Видно, что при $T_{ann} = 1200 - 1300^{\circ}$ С в образце присутствует значительное количество θ -Al₂O₃. В то же время единственной серией узких линий Eu³⁺ в образцах являются линии, принадлежащие α -Al₂O₃: Eu³⁺ [9]. Таким образом, видно, что в отличие от Cr³⁺ Eu³⁺ не образует регулярных центров в *θ*-Al₂O₃. Регулярные центры образуются только при переходе $\theta - \alpha$, когда искаженная кубическая упаковка кислородной подрешетки

Рис. 3. Спектры ${}^{5}D_{0} - {}^{7}F_{n}$ люминесценции образцов Al₂O₃: Eu³⁺ с примесью Cr и Mn), отожженных при различных температурах T_{ann} . Возбуждение Hg-лампой, $\lambda_{exc} = 350 - 420$ nm, T = 77 K.

превращается в гексагональную. Не исключено также, что еще в θ -форме ионы Eu³⁺ формируют вокруг себя окружение, характерное для Eu³⁺ в α -Al₂O₃, и таким образом вносят вклад в узкие линии Eu³⁺, характерные для корунда [9].

В спектрах на рис. З видны также узкие линии 672 и 676 nm, принадлежащие ионам Mn^{4+} в корунде [15], свидетельствующие о наличии примеси марганца в образцах. При тщательном изучении спектров люминесценции образцов с Mn, отожженных при различных температурах, не удалось обнаружить узкие дублетные линии, которые можно было бы приписать Mn^{4+} в θ -Al₂O₃. Это может быть естественным образом объяснено тем, что ионы Mn в θ -Al₂O₃ находятся в других зарядовых состояниях (2+, 3+) и не дают узких линий в спектрах, а в состояние 4+ переходят только в α -фазе. Напротив, существование ионов Mn⁴⁺ в корунде без зарядовой компенсации является необычным свойством *α*-Al₂O₃: Mn, полученного с помощью золь-гель-технологии [16]. При стандартной технике выращивания кристаллов для получения α -Al₂O₃: Mn⁴⁺ требуется зарядовая компенсация, например, при помощи введения ионов Mg²⁺ [15].

Следует отметить, что на рис. 1, 3 видно влияние примесей на температуры переходов между структурными формами. В чистом Al₂O₃ переходы происходят при 900°C (γ - δ), 1100°C (δ - θ), 1150°C (θ - α).

Структурные превращения $\gamma - \delta - \theta - \alpha$ в Al₂O₃, полученном по золь-гель-технологии, ярко проявляются в спектрах ионов Cr³⁺. Результаты наших экспериментов позволяют надежно отождествить линии в спектрах люминесценции с Cr³⁺ в различных кристаллических формах. Это позволяет использовать спектроскопию ионов Cr³⁺ для определения структурного состава Al₂O₃. Исследования спектров Eu³⁺ в процессе структурных превращений показали, что формирование регулярных центров Eu³⁺ происходит на этапе перехода $\theta - \alpha$.

Авторы благодарны А.А. Каплянскому, Дэвиду Кларку и В. Толпыго за интересные обсуждения.

Список литературы

- [1] R.-S. Zhou, R.L. Snyder. Acta Cryst. B47, 617 (1991).
- [2] D.M. Lipkin, H. Schaffer, F. Adar, D.R. Clarke. Appl. Phys. Lett. 70, 2550 (1997).
- [3] Y. Hirai, T. Fukuda, Y. Kobayashi, H. Kuwahara, Y. Kido, K. Kubota. Solid State Commun. 62, 637 (1987).
- [4] E. Alves, M.F. Da Silva, G.N. van den Hoven, A. Polman, A.A. Melo, J.C. Soares. Nucl. Instrum. Methods Phys. Res. Sect. B106, 429 (1995).
- [5] N. Can, P.D. Townsend, D.E. Hole, H.V. Shelling, J.M. Ballesteros, C.N. Alfonso. J. Appl. Phys. 78, 6737 (1995).
- [6] K. Aono, M. Iwaki. Nucl. Instrum. Methods Phys. Res. Sect. B141, 518 (1998).
- [7] S. Geschwind, J.P. Remeika. Phys. Rev. 122, 757 (1961).
- [8] C. Verdozzi, D.R. Jennison, P.A. Schultz, M.P. Sears, J.C. Barbour, B.G. Potter. Phys. Rev. Lett. 80, 5615 (1998).
- [9] А.А. Каплянский, А.Б. Кулинкин, А.Б. Куценко, С.П. Феофилов, Р.И. Захарченя, Т.Н. Василевская. ФТТ 40, 1442 (1998).
- [10] B.E. Yoldas. J. Appl. Chem. Biotech. 23, 803 (1973); Amer. Ceram. Soc. Bull. 54, 286 (1975).
- [11] R.I. Zakharchenya, T.N. Vasilevskaya. J. Mater. Science. 29, 2806 (1994).
- [12] S.P. Feofilov, A.A. Kaplyanskii, R.I. Zakharchenya. J. Lumin. 66 & 67, 349 (1995).
- [13] S.A. Basun, P. Deten, S.P. Feofilov, A.A. Kaplyanskii, W. Strek. J. Lumin. 45, 115 (1990).
- [14] F.J. Bergin, J.F. Donegan, T.J. Glynn, G.F. Imbush. J. Lumin. 34, 307 (1986).
- [15] S. Geschwind, P. Kisliuk, M.P. Klien, J.P. Remeika, D.L. Wood. Phys. Rev. 126, 1684 (1962).
- [16] S.P. Feofilov, A.B. Kulinkin, A.B. Kutsenko, R.I. Zakharchenya. J. Lumin. 76 & 77, 217 (1998).