Корреляция магнитных и электрических свойств системы оксисульфидов (VS)_x(Fe₂O₃)_{2-x}

© Г.В. Лосева, С.Г. Овчинников, В.К. Чернов, Н.Б. Иванова, Н.И. Киселев, А.В. Бовина

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: sgo@post.krascience.rssi.ru

(Поступила в Редакцию 9 июля 1999 г. В окончательном виде 5 октября 1999 г.)

> В твердых растворах оксисульфидов $(VS)_x(Fe_2O_3)_{2-x}$, 0.9 < x < 1.25 исследована корреляция магнитных и электрических свойств. Смена типа проводимости с полуметаллического на полупроводниковый сопровождается изменениями магнитной восприимчивости, характерными для перехода от делокализованных электронов к локализованным. Для x = 1.25 выявлена область ферромагнитного упорядочения в интервале температур 90–120 К.

Работа выполнена при поддержке РФФИ (грант № 99-02-17405).

Обнаружение колоссального магнитосопротивления в легированных манганитах $La_{1-x}Ca_xMnO_3$ подняло интерес и к другим магнитоупорядоченным материалам, в которых изменение магнитных свойств сопровождается изменениями в электрических свойствах — сменой типа проводимости и резким усилением магнитосопротивления.

Магнитоупорядоченные смешанные соединения 3*d*-металлов, к которым относятся: легированные халькогениды Me^IMe^{II}A и MeA^IA^{II} (Me — 3d-металл, A — S, Se), халькогенидные шпинели, например $M_{1-r}Cu_rCr_2Se_4$ (M — Zn, Ca, Hg), а также соединения типа $(MeO)_x(MeA)_{1-x}$, обладают широким спектром обменных взаимодействий и электрических свойств [1]. Изменение состава в подобных соединениях, а также внешних воздействий (температура, электрические и магнитные поля, облучения и т.д.) позволяют целенаправленно создавать новые материалы с заданными физикотехническими параметрами, а также вызывать такие эффекты, как фотомагнитный, переходы металл-изолятор, возникновение ферромагнитного состояния в антиферромагнитной фазе и т.д. Подобные смешанные магнитоупорядоченные соединения 3*d*-металлов достойны детальных экспериментальных и теоретических исследований в связи с особенностями их электронного и магнитного состояний.

В настоящей работе сообщаются результаты структурных, тепловых, электрических и магнитных свойств системы оксисульфидов $(VS)_x(Fe_2O_3)_{2-x}$ со структурой шпинели типа магнетита Fe₃O₄.

1. Получение образцов

Поликристаллические образцы оксисульфидов системы $(VS)_x(Fe_2O_3)_{2-x}$ составов 0.9 < x < 1.25 получены спеканием соответствующих количеств моносульфида ванадия VS и окисла α -Fe₂O₃ в вакуумированных

кварцевых ампулах при 1100 К в течение трех суток с последующим охлаждением со скоростью 40°/h.

Моносульфид ванадия VS был приготовлен отжигом чистого электролитического металла ванадия и серы чистоты 99.999% в вакуумированных кварцевых ампулах при 1200 К в течение трех суток. Полученный моносульфид при 300 К имел структуру β -фазы VS (МпР-тип, $P_{mcn}-D_{2h}^{16}$).

Тонкодисперсный порошок гематита α -Fe₂O₃ был получен как конечный продукт дегидратации синтезированной α -гидроокиси железа (α -FeOOH-гетит) путем прокаливания при 558 К. Полученный α -Fe₂O₃ имел структуру типа Al₂O₃ ($D_{3d}^6 - R3C$) с параметрами элементарной ячейки, соответствующими табличным значениям гематита α -Fe₂O₃ при 300 К. Температура дегидратации α -FeOOH определена из кривых дифференциально-термического анализа (ДТА). Кроме того, из ЯГР-спектра полученного гематита α -Fe₂O₃ оценено $H_{ef} = 515.5$ kOe, которое также соответствует табличному значению α -Fe₂O₃ при 300 К.

2. Техника эксперимента

Рентгенограммы образцов системы сняты на дифрактометре ДРОН-3 в излучении CuK_{α} при 300 К. Для состава с x = 1.25 рентгенограмма снята также при 120 К.

ДТА проведен на дериватографе фирмы МОМ в интервале 300–1400 К со скоростью 10°/тіп. Порошки исследуемых оксисульфидов были помещены в вакуумированные кварцевые ампулы специальной формы. Съемка ДТА-кривых каждого состава повторялась от 3 до 5 термоциклов нагрев–охлаждение.

Измерение удельного электросопротивления ρ проведено четырехзондовым потенциометрическим методом на постоянном токе в интервалах 77–300 К. Спрессованные из порошков образцы-параллелепипеды размерами $10 \times 5 \times 3$ mm были отожжены в вакуумированных кварцевых ампулах при 1300 К в течение часа.

713

Температурные измерения действительной компоненты начальной магнитной восприимчивости χ' проведены на установке с мостом индуктивности и фазочувствительным детектором в интервале 77–300 К. Измерения χ' осуществлены на порошках оксисульфидов, помещенных в специальный контейнер диаметром 2 и длиной 15 mm. Для измерений $\chi'(T)$ использовались порошки, из которых прессовались образцы для измерений $\rho(T)$.

3. Экспериментальные результаты

3.1. Рентгеноструктурный анализ. Согласно данным рентгеноструктурного анализа, исследуемые составы с x = 0.9; 1.1 и 1.25 системы $(VS)_x(Fe_2O_3)_{2-x}$ при 300 К на 90-95% представляли фазы со структурой шпинели типа магнетита FeO · Fe₂O₃ (H_1 ; $O_h^7 - Fd3m$) с близким параметром кубической решетки ($a \sim 8.39$ Å [2]). Дополнительные фазы четко не определяются. Ранее в [3] для состава с x = 1.0 было определено, что преобладающей до 80% фазой являлась сульфошпинель со структурой типа Fe₃O₄. Для состава с x = 1.25было обнаружено, что понижение температуры от 300 до 120 К сопровождается структурными изменениями с понижением симметрии. Следует заметить, что в Fe₃O₄ электронный переход (переход Вервея при $T_v = 119 \,\mathrm{K}$) с понижением температуры $T < T_{\nu}$ сопровождается малым орторомбическим искажением решетки $\sim 0.05\%$ [2]. При этом выше T_v ионы Fe²⁺ и Fe³⁺ в октаэдрических позициях расположены хаотично, ниже T_v — упорядочены.

3.2. Дифференциально-термический анализ. Для всех исследуемых составов системы в кривых ДТА обнаружен обратимый эндоэффект в области $T \sim 880$ К, что по аналогии с ДТА-кривыми магнетита Fe₃O₄ и сульфомагнетита Fe₅·Fe₂O₃ (эндоэффектами при 830 и 850 К, соответствующим температурам Кюри T_c) можно отнести к температурам Кюри оксисульфидов ванадия. Кроме того, для состава (VS)_{1.0}(Fe₂O₃)_{1.0}, полученного спеканием эквимолярных количеств моносульфида и окисла, определенная ранее из магнитных измерений и соответствующего эндопика ДТА величина T_c равна приблизительно 870 К [3].

Из кривых ДТА исследуемых составов системы определена температура плавления, которая составляет 1340 К для *x* = 0.9 и возрастает до 1370 К для *x* = 1.25. 3.3. Электрические свойства. На рис. 1 пред-

5.5. Электрические своиства. На рис. Гпредставлены логарифмические кривые температурной зависимости удельного сопротивления lg ($\rho(T)$) для составов с x = 0.9, 1.1 и 1.25 в интервале 77–300 К. Из рис. 1 видно, что зависимости lg ($\rho(T)$) для составов с x = 0.9и 1.1 в области температур от 80 до 240 К имеют полупроводниковый характер, и при T > 240 К оксисульфид состава x = 0.9 показывает плавную смену типа проводимости с полупроводникового на полуметаллический. Для состава с x = 1.1 в интервале 240–280 К обнаружено уменьшение величины электросопротивления примерно на порядок с сохранением активационного характера

Рис. 1. Температурные зависимости удельного электросопротивления системы $(VS)_x(Fe_2O_3)_{2-x}$. 1 - 0.9, 2 - 1.1, 3 - 1.25.

проводимости до 300 К. Ранее в [3] для состава с x = 1.0в области 280–330 К было обнаружено уменьшение величины ρ в 7–8 раз с сохранением активационного характера проводимости выше 350 К.

Из рис. 1 также видно, что в области 160-240 К температурный ход $\rho(T)$ для составов с x = 0.9 и 1.1 имеет активационный характер, а для x = 1.25 — полуметаллический. Согласно [4], подобный концентрационный ход кривых в исследуемой системе оксисульфидов характерен для неупорядоченных систем с концентрационным переходом металл-изолятор типа Андерсона при критическом значении концентрации x_c . При этом концентрация $x_c = 1.25$ в системе (VS)_x(Fe₂O₃)_{2-x} является критической, так как при этой концентрации происходит смена типа проводимости от полупроводникового к полуметаллическому.

По мере возрастания концентрации моносульфида (x) в системе оксисульфидов ванадия перепад в изменении величины ρ в области температур от 77 до 300 К возрастает от 1.5 порядков для x = 0.9 до 9 порядков для x = 1.25.

Оксисульфид состава x = 1.25 в области 150–180 К претерпевает смену типа проводимости полупроводник-полуметалл с изменением электросопротивления от 10^8 до $10^{-1} \Omega \cdot \text{сm}$.

3.4. Магнитные свойства. На рис. 2 представлены температурные зависимости действительной компоненты начальной магнитной восприимчивости составов с x = 0.9 и 1.1 системы $(VS)_x(Fe_2O_3)_{2-x}$. Для состава с x = 0.9 выявлена аномалия в кривой $\chi'(T)$ в интервале 80–210 К с пиком при 125 К. В области 210–280 К кривая $\chi'(T)$ имеет температурно-независимый характер

Рис. 2. Температурные зависимости магнитной восприимчивости системы $(VS)_x(Fe_2O_3)_{2-x}$. 1 - 0.9, 2 - 1.1.

Рис. 3. Температурная зависимость магнитной восприимчивости состава $(VS)_{1.25}(Fe_2O_3)_{0.75}$.

с последующим возрастанием величины восприимчивости к 300 К. Для состава с x = 1.1 в кривой $\chi'(T)$ обнаружены два широких пика при 145 и 298 К.

На рис. 3 показана кривая $\chi'(T)$ для состава x = 1.25. Как видно из температурной зависимости магнитной восприимчивости, у этого состава обнаружено существование намагниченности в ограниченной области температур 90–120 К с пиком при 115 К и двумя точками магнитных превращений при 90 и 120 К.

Из экспериментальных исследований физических свойств системы оксисульфидов $(VS)_x(Fe_2O_3)_{2-x}$ с 0.9 < x < 1.25 можно сделать выводы о взаимосвязи в изменении электрических и магнитных свойств.

1) По мере возрастания концентрации сульфида (x) в образцах системы обнаружены: а) концентрационный переход полупроводник-полуметалл с $x_c = 1.25$; б) аномалия магнитной восприимчивости в интервале 80-210 К для составов с x = 0.9 и 1.1 с последующим возрастанием величины восприимчивости, которая сменяется существованием намагниченности в ограниченной области температур 90-120 К для x = 1.25.

2) Температурные измерения электросопротивления и восприимчивости показали: а) для состава с x = 0.9 плавная смена типа проводимости от T > 240 K сопровождается изменением характера кривой $\chi'(T)$ от температурно-зависимого к температурно-независимому в интервале 210 < T < 290 K; б) для состава с x = 1.1, как и для x = 1.0 [3], изменение величины ρ на порядок в области 240-300 K сопровождается пиком в кривой $\chi'(T)$ при 298 K.

3) Интересные результаты получены для состава с x = 1.25. Смена типа проводимости полупроводник-полуметалл с изменением величины ρ на 9 порядков в интервале 160–180 К сопровождается структурными изменениями с понижением симметрии. При этом обнаружено существование намагниченности в области 90–120 К с пиком при 115 К в кривой $\chi'(T)$ и двумя точками магнитных переходов.

4. Обсуждение результатов

Электронная структура оксисульфидов железа $FeS \cdot Fe_2O_3$ обсуждалась ранее в работе [3] на основе зонной структуры магнетита Fe₃O₄. Для обоих соединений характерно ферримагнитное упорядочение ионов железа. Ниже точки Вервея формула оксисульфида железа может быть записана в виде $Fe_A^{3+}S^{2-}Fe_B^{2+}Fe_B^{3+}O_3^{2-}$. Носителями являются *t*_{2*g*}-электроны в В-подрешетке, тока двигающиеся в узкой *d*-зоне, для которой характерны сильные электронные корреляции. На основании данных, полученных для $FeS \cdot Fe_2O_3$, для соединения $VS \cdot Fe_2O_3$, основываясь на предположении о сохранении решетки шпинели, можно предположить следующую формулу: Ион V³⁺ в тетраэдрической $V_A^{3+}S^{2-}Fe_B^{2+}Fe_B^{3+}O_3^{2-}$. позиции обладает двумя *d*-электронами на *e*_g-орбиталях, в кристалле образованная этими электронами eg-зона будет наполовину заполненной и для нее также важны эффекты сильных электронных корреляций. Вследствие корреляций eg-зона ванадия расщепляется на нижнюю и верхнюю хаббардовские подзоны, причем для x = 1 уровень Ферми попадет в щель Мотта-Хаббарда. В составах с $x = 1 e_g$ -зона будет заполнена менее половины для x < 1 и более половины для x >1. Перетекание электронов из зон ванадия в зоны железа и обобществление электронов в единые узкие *d*-зоны усложняет картину электронной структуры. Тем не менее нет сомнений, что в рассматриваемых соединениях носителями являются сильно коррелированные электроны из узких *d*-зон, для которых характерны переходы между локализованными и делокализованными состояниями при небольших изменениях внешних параметров (температуры, состава и пр.) [4]. В результате возможны различные режимы поведения, отражающиеся как на электрических, так и на магнитных свойствах.

Поскольку V³⁺ имеет S = 1, то система $(VS)_x(Fe_2O_3)_{2-x}$ должна быть ферримагнитной. Сравнивая кривые 1 и 2 на рис. 1 и 2, можно увидеть, что в области полуметаллического типа проводимости имеется слабая температурная зависимость восприимчивости паулиевского типа, что указывает на делокализованный характер *d*-электронов. С понижением температуры, когда появляется активационный тип проводимости, температурная зависимость восприимчивости становится характерной для локализованных электронов. Таким образом, изменения температурных зависимостей электрических и магнитных свойств составов с x = 0.9и 1.1 коррелируют друг с другом.

Для состава с x = 1.25 ситуация более сложная. Здесь узкая по температуре область ферромагнитного состояния появляется ниже T = 160 К, где имеет место смена типа проводимости с полуметаллического на полупроводниковый. Подобного типа магнитные фазы предсказывались в [1] как следствие температурноиндуцированного обмена в системе зонных носителей, концентрация которых растет в полупроводниковой фазе с ростом температуры. Другая возможная причина заключается в стабилизации ферронных состояний [5] внутри двухподрешеточной, в данном случае ферримагнитной матрицы. Аналогичная температурная зависимость намагниченности с узким пиком в окрестности 473-533 К известна для системы сульфидов железа FeS_x с x = 1.11 [6,7].

Список литературы

- А.А. Бердышев. Обменные взаимодействия в магнитоупорядоченных твердых телах и вызываемые ими эффекты. Автореф. докт. дис. Свердловск (1975).
- [2] L.R. Bickford. Rev. Mod. Phys. 25, 75 (1953).
- [3] Г.В. Лосева, Г.М. Мукоед, С.Г. Овчинников, Л.И. Рябинкина. ФГТ 34, 6, 1765 (1992).
- [4] Н.Ф. Мотт. Переходы металл-изолятор. М. (1979). 344 с.
- [5] Э.Л. Нагаев. Физика магнитных полупроводников. Наука, М. (1979). 331 с.
- [6] T. Hihara. J. Sci. Hirosima Univ., Ser. A, 24, 1, 31 (1960).
- [7] Г.В. Лосева, С.Г. Овчинников, Г.А. Петраковский. Переход металл-диэлектрик в сульфидах 3*d*-металлов. Новосибирск, Наука (1983). 144 с.