Особенности СВЧ-фотопроводимости природного алмаза в спектральной области 200–250 nm

© А.Г. Захаров, Н.А. Поклонский, В.С. Вариченко, А.Г. Гонтарь*

Белорусский государственный университет, 220050 Минск, Белоруссия * Институт сверхтвердых материалов Академии наук Украины, 252153 Киев, Украина

E-mail: heii@phys.bsu.unibel.by

(Поступила в Редакцию 3 июня 1999 г. В окончательной редакции 7 сентября 1999 г.)

> Методами фотопроводимости на сверхвысоких частотах (СВЧ-ФП) и постоянном токе (НЧ-ФП), а также оптического поглощения исследовались механически полированные пластины природного алмаза типов Па и Іа. Показано, что высокая дефектно-примесная неоднородность и поликристалличность образцов обусловливают различия в спектральном распределении СВЧ-ФП и НЧ-ФП. Предполагается, что при подсветке алмаза неравновесные дырки захватываются на границы кристалличное влияние химической и механической обработки алмаза на СВЧ-ФП и НЧ-ФП.

Фотопроводимость на постоянном токе, т.е. на низких частотах (НЧ-ФП), является одним из важнейших методов исследования дефектов в полупроводниках и диэлектриках [1,2]. Однако применительно к исследованию алмаза контактные методы имеют ряд недостатков: 1) технология изготовления омических контактов к кристаллам алмаза *i*- и *n*-типа электропроводности в настоящее время не разработана, 2) спектр НЧ-ФП завит от напряженности внешнего электрического поля [3]. Это обусловливает необходимость применения бесконтактных неразрушающих методик исследования фотопроводимости алмаза, например в СВЧ-диапазоне [4].

Цель работы — установление закономерностей влияния дефектно-примесного состава и обработки поверхности природного алмаза на СВЧ-ФП при фотовозбуждении в области длин волн $\lambda \approx 200-250$ nm.

1. Методика эксперимента

Исследовались механически полированные пластины природного алмаза типа II*a* (концентрация азота в *A*-форме $N_A \approx 3 \cdot 10^{18} \,\mathrm{cm}^{-3}$) и I*a* ($N_A \approx 3 \cdot 10^{18} \,\mathrm{cm}^{-3}$, концентрация азота в *B*1-форме $N_{B1} \approx 3 \cdot 10^{19} \,\mathrm{cm}^{-3}$) объемом $V_a \approx 8 \times 5 \times 0.5 \,\mathrm{mm}^3$ и массой 0.09–0.11 карат. Перед измерениями образцы травились в растворе $K_2 Cr_2 O_7 + H_2 SO_4 + H_2 O$, промывались в кипящей дистиллированной воде и высушивались на воздухе. Измерения проводились при комнатной температуре.

При измерениях СВЧ-ФП образцы помещались в пучность электрической компоненты поля $E_0 \exp(-i\omega t)$ частотой $f = \omega/2\pi = 9.6$ GHz (центр прямоугольного резонатора типа H_{101}). Амплитуда напряженности электрического поля в пустом резонаторе $E_0 \approx 100$ V/cm оценена из экспериментально определенных добротности $Q \approx 1100$ и величины подводимой к резонатору мощности P = 26 mW по формуле [5] $E_0 = \sqrt{2QP/(\omega \varepsilon_0 V)}$,

где $V \approx 1 \,\mathrm{cm}^3$ — часть объема резонатора, в которой сосредоточена практически вся электрическая компонента СВЧ-поля, $\varepsilon_0 = 8.85 \, \mathrm{pF/m}$ — электрическая постоянная. Неравновесные носители заряда возбуждались прошедшим через монохроматор МДР-12 модулированным (300 Hz) излучением ксеноновой лампы мощностью 1 kW. Засветка пластин осуществлялась поочередно с двух сторон. Интенсивность фотовозбуждения была такой, что скин-эффектом и плазменным отражением СВЧ-поля от образца можно было пренебречь. За нулевой уровень СВЧ-ФП принималась величина обратной добротности резонатора с образцом без подсветки. Регистрация СВЧ-ФП производилась в режиме синхронного детектирования. Амплитуда напряженности электрической компоненты СВЧ-поля внутри образца есть E_0/ε_r , где $\varepsilon_r = 5.7$ — относительная диэлектрическая проницаемость алмаза. Поглощаемая в резонаторе СВЧ-мощность Ра при засветке образца объемом Va равна

$$P_a = \frac{1}{2} \left(\frac{E_0}{\varepsilon_r}\right)^2 \int\limits_{V_a} \operatorname{Re} \sigma(\mathbf{r}) d^3 \mathbf{r} \approx \frac{A}{2} \left(\frac{E_0}{\varepsilon_r}\right)^2 \frac{\operatorname{Re} \sigma}{\alpha(\lambda)}, \quad (1)$$

где Re $\sigma(\mathbf{r})$ — действительная часть локальной фотопроводимости, A — освещаемая площадь образца, $1/\alpha(\lambda)$ — глубина возбуждения неравновесных носителей заряда светом с длиной волны λ в области фундаментального поглощения алмаза, Re σ — среднее значение индуцированной подсветкой реальной части электропроводности при коэффициенте поглощения света $\alpha(\lambda)$.

При измерениях НЧ-ФП источником света служила дейтериевая лампа мощностью 25 W. Разность потенциалов между токовыми контактами из аквадага к алмазу составляла 50 V ($E_{dc} \approx 100$ V/cm).

Спектры оптического поглощения (пропускания) образцов измерялись на спектрофотометре SPECORD-M40.

Рис. 1. Типичные спектры фотопроводимости и пропускания образцов алмаза Па ($N_A \approx 3 \cdot 10^{18} \text{ cm}^{-3}$): 1, 2 — CBЧ-фотопроводимость при возбуждении светом с двух сторон алмазной пластины (спектральная ширина щели $\Delta \lambda = 2.4 \text{ nm}$). Здесь и далее спектры CBЧ-ФП пронормированы на количество квантов возбуждающего излучения; 3 — пропускание света ($\Delta \lambda = 0.3 \text{ nm}$); 4 — фотопроводимость на постоянном токе (масштаб для НЧ-ФП по оси ординат не определен) (a). Типичные спектры фотопроводимости и пропускания образцов алмаза типа Ia ($N_A \approx 3 \cdot 10^{18} \text{ cm}^{-3}$, $N_{B1} \approx 3 \cdot 10^{19} \text{ cm}^{-3}$) (b).

Рис. 2. Спектры СВЧ-ФП образца алмаза типа II*a* до (1) и после (2) химической очистки в K₂Cr₂O₇+H₂SO₄+H₂O с последующей "полировкой" поверхности корундовым порошком (диаметр зерна 14 μ m); 1 — спектральная ширина щели $\Delta \lambda = 1.2$ nm, 2 — $\Delta \lambda = 0.5$ nm, 3 — детальное представление кривой 1.

2. Экспериментальные результаты и их обсуждение

2.1. Типичные спектры фотопроводимости и оптического поглощения представлены на рис. 1, 2. Видно, что СВЧ-ФП и НЧ-ФП в спектральной области 200–250 nm имеет существенные отличия. 1) Спектры НЧ-ФП алмазов типа Ia и IIa являются различными и типичными для этих алмазов [6,7], но спектральное распределение СВЧ-ФП у них оказывается практически одинаковым.

2) При уменьшении длины волны возбуждающего света ($\lambda \approx 223-220$ nm) наблюдается уменьшение НЧ-ФП, но рост СВЧ-ФП (рис. 1, *a*, *b*).

3) После химической очистки алмаза в $K_2Cr_2O_7 + H_2SO_4 + H_2O$ механическая обработка корундовым порошком (14 μ m) с последующей промывкой в кипящей H_2O и сушкой на воздухе приводит к росту СВЧ-ФП на порядок и более (рис. 2). Однако при этом же способе подготовки поверхности алмаза к измерениям НЧ-ФП происходит "закорачивание" электрической цепи либо сразу при подключении электрических зондов, либо примерно в тот момент, когда при "развертке" подсветки (из области длинных волн к более коротким) длина волны λ становится равной 225–235 nm.

2.2. Рассмотрим первое из указанных в п. 2.1 отличий. Известно [7,8], что природный алмаз является чрезвычайно неоднородным материалом, а алмазы типа II и близкие к ним, кроме того, имеют блочное строение. Блоки (кристаллиты) имеют характерные размеры L от 1 до 100 μ m, а углы разориентации до 1° [8]. Рассмотрим, как эти факторы влияют на СВЧ-ФП и НЧ-ФП.

Экспериментальные исследования облученных частицами высоких энергий кристаллических полупроводников показали [9], что введение собственных радиационных дефектов смещает уровень Ферми в запрещенной зоне к положению E_F^* , которое не зависит от примесного состава и условий облучения. В частности, по расчетам [9], у алмаза предельное положение уровня Ферми, отсчитанное от потолка *v*-зоны, $E_F^* \approx 0.4 \cdot E_g$, где $E_g \approx 5.5 \,\mathrm{eV}$ — ширина запрещенной зоны алмаза при температуре 300 К.

Предположим, что в алмазе на границе раздела двух кристаллов положение уровня Ферми E_{F}^{*} определяется теми же дефектами, что и в сильнооблученном кристалле. Уровень Ферми в объеме нелегированного криталлита расположен у середины запрещенной зоны. Тогда поверхностные состояния на границе будут иметь отрицательный заряд, а объем кристаллита — положительный, так что возникает двойной электрический слой. Это создает межкристаллический энергетический барьер для электронов проводимости *с*-зоны [10] высотой $\approx 0.1E_{a}$, много больший средний тепловой энергии электрона $3k_BT/2$. В условиях эксперимента при подсветке неравновесные дырки захватываются на границы кристаллита, а равное им число "локализованных" электронов в течение времени их жизни "осциллирует" в кристаллите (наподобие электрона F-центра в решетке NaCl).

Для описания СВЧ-ФП поликристаллического алмаза рассмотрим модели электропроводности по Друде и Лоренцу [1,2,11,12] одного кристаллита. Считаем, что средняя длина свободного пробега электрона проводимости много меньше размеров кристаллита L, а время жизни τ_n много больше времени релаксации квазиимпульса τ_c .

По модели Друде зависимость реальной части электропроводности кристаллита от частоты СВЧ-поля $\omega = 2\pi f$ имеет вид [11]

$$\operatorname{Re} \sigma_D = \frac{\sigma_{dc}}{1 + (\omega \tau_c)^2},\tag{2}$$

где $\sigma_{dc} = e^2 n \tau_c / m_c$ — электропроводность на постоянном токе, e — модуль заряда электрона, $m_c \approx 0.48 m_0$ — эффективная масса электропроводности электрона в

с-зоне алмаза, *n* — концентрация неравновесных электронов проводимости в "среднем" кристаллите, $\tau_c = \mu_n m_c/e \approx 5 \cdot 10^{-13} \text{ s}$ — среднее время релаксации квазиимпульса электронов проводимости внутри кристаллита, $\mu_n \approx 2000 \text{ cm}^2/(\text{V}\cdot\text{s})$ [13] — подвижность электронов при температуре $T \approx 300 \text{ K}$, так как CBЧ-поле в алмазе $E_{ac} = E_0/(\varepsilon_r \sqrt{2}) \approx 13 \text{ V/cm}$ не разогревает электроны.

По модели Лоренца уравнение движения электрона с-зоны в пределах кристаллита под действием электрической компоненты СВЧ-поля есть

$$\frac{d^2x}{dt^2} + \frac{dx}{\tau_c dt} + \omega_0^2 x = -\frac{eE_0}{m_c \varepsilon_r} \exp(-i\omega t), \qquad (3)$$

где x(t) — смещение электрона от центра кристаллита вдоль электрической компоненты СВЧ-поля, ω_0 — собственная частота осцилляций неравновесного электрона в кристаллите до рекомбинации с дыркой на его границе.

Частоту ω_0 оценим по модели осциллятора: квазиупругая сила, возвращающая электрон в центр кристаллита, пропорциональна смещению из "равновесия" и константе упругости k, так что $\omega_0 = \sqrt{k/m_c}$. Полагаем, что амплитуда смещения неравновесного электрона от центра кристаллита равна L/2 (рекомбинация с дыркой на границе кристаллита или отражение). Тогда на основании теоремы вириала [14] для гармонического осциллятора (средняя потенциальная энергия равна средней кинетической энергии) имеем: $k(L/2)^2 = 3k_BT$, следовательно, $\omega_0 = (2/L)\sqrt{3k_BT/m_c}$.

Из решения уравнения (3) находим плотность тока — en dx/dt и реальную часть электропроводности кристаллита по модели Лоренца [12]

$$\operatorname{Re}\sigma_{L} = \sigma_{dc} \frac{(\omega/\tau_{c})^{2}}{(\omega_{0}^{2} - \omega^{2})^{2} + (\omega/\tau_{c})^{2}}.$$
(4)

Подставляя $\text{Re } \sigma_D$ и $\text{Re } \sigma_L$ в формулу (1), получаем (рис. 3), что при частоте f = 9.6 GHz кристаллиты с размерами $L \leq 0.5 \,\mu\text{m}$ не будут давать вклада в СВЧ-ФП.

Рис. 3. Рассчитанное по формуле (1) поглощение СВЧмощности электронами проводимости P_a в образце алмаза: 1 — расчет $\operatorname{Re} \sigma_D / \sigma_{dc}$ по модели Друде при $\tau_c \approx 5 \cdot 10^{-13}$ s; 2, 3 — расчет $\operatorname{Re} \sigma_L / \sigma_{dc}$ по модели Лоренца для алмаза, имеющего блочное строение. $2 (L \approx 2 \, \mu \text{m}), 3 (L \approx 0.5 \, \mu \text{m}).$

Видно, что при $L > 2 \,\mu$ т поглощение неравновесными электронами кристаллита P_a в СВЧ-диапазоне практически не зависит от частоты поля f. В то же время по модели Друде практически во всем СВЧ-диапазоне $(0.3-300 \,\text{GHz})$ поглощение СВЧ-мощности не зависит от размера кристаллита L (при условии, что средний размер кристаллита L много больше длины свободного пробега).

Отметим, что наблюдаемые нами особенности СВЧ-ФП напоминают проявление амплитудного размерного эффекта [15], однако имеют иную природу. В самом деле, амплитудный размерный эффект возникает тогда, когда удвоенная амплитуда колебаний электрона проводимости $2a = \mu_n E_{ac}/f$ в переменном электрическом поле частотой f начинает превышать размер кристаллита L, так что траектория электрона перестает "умещаться" в кристаллите: $2a/L \ge 1$. Поэтому, если переходы электронов проводимости между кристаллитами затруднены из-за барьера между ними, то часть периода СВЧ-поля электроны проводят "прижатыми" к границе кристаллита, не совершая работы. В результате плотность мощности, поглощаемой в образце, становится меньше обычной (по модели Друде) величины $\sigma_{dc}E_0^2/(2\varepsilon_r^2) = \sigma_{dc}E_{ac}^2/\varepsilon_r^2$. Однако из условия $fL \leq \mu_n E_{ac}$ следует, что амплитудный размерный эффект проявляется при наших условиях измерения СВЧ-ФП лишь для кристаллитов с размерами $L \le 0.03 \, \mu$ m.

Таким образом, при размерах кристаллитов $L > 2 \,\mu$ m величина и спектральное распределение СВЧ-ФП по модели Лоренца оказываются таким же, как в монокристаллическом образце (межкристаллитные границы не проявляются). При измерениях фотопроводимости в режиме постоянного тока (НЧ-ФП) наличие кристаллитов приводит к поляризации алмаза. Величина поляризации зависит от местоположения контактов и соотношения между проводимостью кристаллита и проводимостью по межкристаллитному промежутку [16].

Экспериментальным подтверждением предлагаемой модели могут также служить данные, полученные нами при исследовании механически полированных пластин, вырезанных из природных алмазов, и эпитаксиальных алмазных пленок. В образцах, у которых в спектрах катодолюминесценции (10 kV; 6 µА; диаметр электронного пучка ≈ 1 mm) присутствует линия излучения свободного экситона (235 nm), величина СВЧ-ФП была наибольшей при подсветке зона-зона (в собственной области поглощения). Отметим, однако, что среди образцов алмаза, имеющих наибольший сигнал собственной СВЧ-ФП, были такие, у которых излучения свободного экситона зафиксировано не было. Это объясняется существующей теорией внутреннего фотоэффекта: неравновесные носители заряда противоположных знаков пространственно разделяются на границах кристаллитов, что препятствует образованию экситонов [1,2].

Однако наше исследование алмазных поликристаллических пленок показало, что даже при регистрации интенсивной (по сравнению с природными алмазами) линии излучения свободного экситона сигнал СВЧ-ФП при подсветке в собственной области не регистрируется. Данный экспериментальный факт не удается объяснить исходя из теории внутреннего фотоэффекта [1,2]. Согласно же оценкам по формулам (1), (2) и (4), это, возможно, связано с тем, что характерный размер кристаллита $L \leq 0.5 \,\mu$ m. Действительно, при $L \leq 0.5 \,\mu$ m собственная частота колебаний неравновесных электронов в кристаллите $\omega_0 = (2/L) \sqrt{3k_B T/m_c}$ больше $\omega = 2\pi f \approx 60.3$ GHz и поглощения ими CBЧ-мощности не происходит.

Косвенно подтверждают предлагаемую модель данные [17], где при $T \approx 300 \text{ K}$ наблюдался рост электропроводности поликристаллических алмазных пленок ($L \approx 10 \,\mu$ m; электроды из аквадага) с ростом частоты электрического поля в диапазоне $f = 10^2 - 10^4 \text{ Hz}$ по закону $\text{Re} \,\sigma \propto f^s$, где $s \approx 0.6$. Это согласуется с оценками $\text{Re} \,\sigma_L$ по формуле (4); см. также рис. 3.

Сопоставим данные на рис. 1, a и b, учитывая высокую примесно-дефектную неоднородность природных алмазов [7,8]. Исследование катодолюминесценции (при возбуждении расфокусированным электронным пучком) показало, что B1-дефекты (пластинчатые, азотсодержащие образования в плоскости (111) с ИК-полосами поглощения 7.5, 8.5, 9.1, 9.9, 12.8 μ m) распределены в алмазах типа Іa крайне неравномерно. Локальное время жизни неравновесных электронов τ_n и их подвижность (время релаксации квазиимпульса τ_c) в участках, содержащих B1-дефекты, меньше, чем в более совершенных участках.

Если глубина фотовозбуждения алмаза $1/\alpha(\lambda)$ много больше среднего размера кристаллита *L*, то при равномерном освещении пластины кристаллиты, не содержащие *B*1-дефекты (индекс 1) и содержащие их (индекс 2), вносят вклад в СВЧ-ФП в отношении [18]

$$\frac{P_{a1}}{P_{a2}} = \frac{\sum_{j} (KV_1 \mu_{n1} \tau_{n1})_j}{\sum_{l} (KV_2 \mu_{n2} \tau_{n2})_l},$$
(5)

где μ_{n1} , μ_{n2} , τ_{n1} , τ_{n2} — подвижности и стационарные времена жизни неравновесных электронов в двух различных типах кристаллитов объемами V_{1j} и V_{2i} , K_j , K_l коэффициенты вклада кристаллитов j и l в СВЧ-ФП по формуле (4) при $T \approx 300$ К из-за их размеров вдоль электрической компоненты СВЧ-поля: $K_j = 0$, если $L_j < 0.5 \,\mu$ m, $K_j = 1$, если $L_j \ge 2 \,\mu$ m, $0 < K_j < 1$ при $0.5 < L_j < 2 \,\mu$ m.

Таким образом, из (5) следует, что бо́льший вклад в СВЧ-ФП будет давать структурно более совершенные участки образца (с индексом 1) независимо от их местоположения. При $P_{a1} \gg P_{a2}$ величина СВЧ-ФП будет такой же, как у кристаллов, не содержащих *B*1-дефекты, т. е. как у алмазов типа II*a*; ср. рис. 1, *a*, *b*.

На результаты измерения НЧ-ФП алмазов, содержащих B1-дефекты, влияют процессы, связанные с переносом носителей заряда от одного электрического контакта Список литературы

до другого. Сквозной фототок определяется подвижностью и концентрацией носителей на всем расстоянии между электродами и зависит от местоположения участков с различной величиной фотопроводимости и наличием границ кристаллов. В частности, НЧ-ФП, представленная на рис. 1, b, отвечает случаю, когда области, содержащие B1-дефекты и не содержащие их, последовательно включены в электрическую цепь.

Таким образом, первое из указанных в п. 2.1 отличий можно объяснить неоднородностью и поликристаллическим строением природных алмазов типа II и близких к ним и отсутствием проявления в СВЧ-ФП поляризационных эффектов при размере кристаллитов $L > 2 \, \mu$ m.

2.3. Рассмотрим второе и третье из указанных в п. 2.1 отличий спектрального распределения СВЧ-ФП и НЧ-ФП. (Рост на порядок СВЧ-ФП после обработки алмаза корундовым порошком (рис. 2) и невозможность при таком же способе подготовки поверхности алмаза к измерениям проводить регистрацию НЧ-ФП этих же образцов алмаза).

Для исследования этих отличий СВЧ-ФП проводилась обработка образцов алмаза и другими способами [19-22]: химическими растворами, температурная обработка на воздухе (200-500°C; 1 h), ионное травление. Возрастания сигнала СВЧ-ФП при этом не было получено, а ионное травление Ar^+ (1 keV, 1 min) привело к необратимому изменению вида СВЧ-ФП и уменьшению его абсолютной величины. По всей вероятности, это обусловлено появлением на его поверхности "осадков", состоящих из компонентов травителей и продуктов травления [20,21] (химическая и температурная обработка), и возрастанием дефектности (ионное травление). Возможно также, что такие особенности СВЧ-ФП обусловлены наличием у поверхности алмаза отрицательного электронного сродства (электрон поглощает энергию СВЧ-поля независимо от того, находится он в образце или над ним).

Таким образом, второе и третье отличие по п. 2.1 спектрального распределения СВЧ-ФП и НЧ-ФП объясняется иной чувствительностью метода СВЧ-ФП к состоянию поверхности исследуемых образцов по сравнению с НЧ-ФП.

Итак, СВЧ-ФП и НЧ-ФП при исследовании одних и тех же природных алмазных пластин имеют различные спектральные распределения при фотовозбуждении в диапазоне длин волн $\lambda = 200-250$ nm. Различие СВЧ-ФП и НЧ-ФП у алмазов типов Ia и IIa интерпретировано исходя из разработанной модели СВЧ-ФП, учитывающей особенности движения неравновесных электронов в образцах, имеющих блочное строение. Из модели следует, что при $T \approx 300$ K на результаты измерений методом СВЧ-ФП ($f \approx 9.6$ GHz) наличие блоков (кристаллитов) с размером L более 2μ m не влияет, а кристаллиты с размером менее 0.5μ m не вносят вклад в СВЧ-ФП. Продемонстрировано различное влияние химической и механической обработки алмаза на спектральное распределение СВЧ-ФП и НЧ-ФП.

[1] А.Н. Васильев, В.В. Михайлов. Введение в спектроскопию твердого тела. МГУ, М. (1987). 192 с.

- [2] P.Y. Yu, M. Cardona. Fundamentals of Semiconductors. Springer, Berlin (1999). 620 p.
- [3] P. Gonon, S. Prawer, Y. Boiko, D.N. Jamieson. Diamond and Related Materials 6, 860 (1997).
- [4] В.А. Миляев, В.А. Санина. Изв. вузов. Радиофизика 23, 4, 407 (1980).
- [5] Ч. Пул. Техника ЭПР-спектроскопии. Мир, М. (1970). 557 с.
- [6] P. Denham, E.C. Lightowlers, P.J. Dean. Phys. Rev. 161, 3, 762 (1967).
- [7] В.С. Вавилов, А.А. Гиппиус, Е.А. Конорова. Электронные и оптические процессы в алмазе. Наука, М. (1985). 120 с.
- [8] Г.Б. Бокий, Г.Н. Безруков, Ю.А. Клюев, А.М. Налетов, В.И. Непша. Природные и синтетические алмазы / Под ред. И.И. Шафрановского. Наука, М. (1986). 224 с.
- [9] В.Н. Брудный, С.Н. Гриняев. ФТП 32, 3, 315 (1998).
- [10] J.M. Palau, A. Ismail, L. Lassabatere. Solid State Electronics 28, 5, 499 (1985).
- [11] П. Гроссе. Свободные электроны в твердых телах. Мир, М. (1982). 270 с.
- [12] П.С. Киреев. Физика полупроводников. Высш. шк., М. (1975). 583 с.
- [13] Физические свойства алмаза. Справочник / Под ред. Н.В. Новикова. Наук. думка, Киев (1987). 192 с.
- [14] Б.В. Васильев, В.Л. Любошиц. УФН 164, 4, 367 (1994).
- [15] Э.М. Эпштейн. ФТП 17, 12, 2190 (1983).
- [16] Поликристаллические полупроводники. Физические свойства и применения / Под ред. Г. Харбеке. Мир, М. (1989). 344 с.
- [17] Г.А. Соколина, А.А. Ботев, Л.Л. Буйлов, С.В. Банцеков, О.И. Лазарева, А.Ф. Белянин. ФТП 24, 1, 175 (1990).
- [18] В.Л. Бонч-Бруевич. УФН 140, 4, 583 (1983).
- [19] B.B. Pate. Surf. Sci. 165, 83 (1986).
- [20] A.T. Collins, S. Rafique. J. Phys. C: Solid. Stat. Phys. 11, 1375 (1978).
- [21] A. Lepek, A. Halperin, J. Levinson. Phys. Rev. B19, 2250 (1979).
- [22] Э. Зенгуил. Физика поверхности. Мир, М. (1990). 536 с.