О роли спектральной диффузии в спектроскопии одиночной примесной молекулы

© В.В. Пальм, К.К. Ребане

Институт физики Тартуского университета, 51014 Тарту, Эстония E-mail: rebanek@fi.tartu.ee

(Поступила в Редакцию 7 сентября 1999 г.)

Измерены спектры возбуждения флуоресценции одиночных примесных молекул террилена в н-декане при T = 1.7 К. В спектрах, измеренных для одного и того же спектрального интервала в различные последовательные моменты времени, наблюдаются бесфононные линии (БФЛ) индивидуальных примесных молекул нескольких типов — с различным временным поведением формы и частоты линии. С одной стороны, наблюдаются стабильные БФЛ, хорошо описываемые лоренцевой формой. С другой стороны, наблюдаются спектральные особенности с меняющимся от спектра к спектру контуром, причем лишь отдельные фрагменты такого контура могут быть описаны лоренцианом — такие особенности интерпретируются, исходя из предположения о наличии нестабильных примесных молекул, БФЛ которых совершают небольшие (десятки MHz) спектральные прыжки с временным интервалом порядка 10 s. Для подобной молекулы зарегистрировано существенное уменьшение вклада спектральной диффузии при релаксации структуры образца.

Спектроскопия одиночной примесной молекулы (СОМ) (примесного центра) [1–5] не есть просто предельный по точности измерения вариант традиционной спектроскопии. Она имеет несколько отличительных черт. Ими нельзя пренебречь при интерпретации результатов измерения спектров [6].

Например, если молекула поглотила фотон и перешла в возбужденное состояние, то в течение времени нахождения в этом состоянии плюс время колебательной релаксации на наинизший колебательный уровень основного электронного состояния, поглощение изучаемой молекулы на частоте ее бесфононной линии (БФЛ) вовсе отсутствует.

1. Теоретические соображения

Обычная для СОМ спектральная ширина линии возбуждения лазера составляет 1–2 MHz, минимальная ширина измеренных этим методом БФЛ — порядка 5–10 MHz. Предельно возможная добротность измерений ширины БФЛ определяется отношением частоты электронного перехода ν к однородной ширине его линии Γ_h . СОМ использует эту возможность и уже реализует добротность измерений порядка $10^7 - 10^8$.

Очевидно, что высокая точность — важное преимущество СОМ как источника информации. С другой стороны, из-за ее чрезвычайной чувствительности возникают и специфические осложнения при измерениях и интерпретации. Частота и форма БФЛ чувствительны к весьма малым изменениям полей (деформационного, электрического и др.) в месте расположения примесной молекулы, т.е. к изменению структуры и состояния образца. В отсутствие фазового перехода эти изменения связаны с неоднородностями в строении образца — изменениями положения ориентации и электронных состояний соседних примесей и точечных дефектов, движения дислокаций и т.п. Эта "динамическая неоднородность" (ДНО) отражает тепловые флуктуации, процессы релаксации на пути к тепловому равновесию, а также изменения, вызванные возбуждающим люминесценцию лазерным излучением. Спектральная диффузия, наблюдаемая в спектрах СОМ, есть проявление ДНО. Измерение положения и контура БФЛ в СОМ основано на накоплении сигнала флуоресценции в схеме счета фотонов и занимает время от миллисекунды до десятков секунд. Как показывает эксперимент, этого времени вполне достаточно для проявления динамической неоднородности и обусловленной ею спектральной диффузии.

Процессы ДНО весьма разнообразны, их влияние на примесные молекулы в высокой степени индивидуально. Разумеется, есть зависимость от рода матрицы и примеси, от процедуры охлаждения образца, от промежутка времени, прошедшего с момента охлаждения. В СОМ весьма четко проявляется индивидуальность молекулы и ее окружения.

Теоретически понятно, и эксперимент это подтверждает, что в зависимости от строения ближайшего окружения конкретной примесной молекулы, а также от стадии протекания релаксационных и др. процессов (т. е. от времени конкретного измерения), есть как почти нечувствительные к ДНО примесные молекулы, обладающие относительно устойчивыми БФЛ (молекулы типа 1), так и настолько чувствительные, что из-за частого изменения положения БФЛ в спектре сигнал флуоресценции безнадежно сливается с шумовым фоном (тип 2). Такие молекулы для СОМ потеряны; не исключено, однако, что прогресс эксперимента (более быстрые измерения, более низкие температуры и т.п.) сделает многие из них доступными для СОМ. Возможно также множество промежуточных (и более интересных) ситуаций: из-за ДНО положение БФЛ в спектре или ее контур скачкообразно изменяются (амплитуда скачков частоты может быть как малой по сравнению с Γ_h , так и существенно превосходить Γ_h) во время измерения спектра (сканирования частоты лазерного возбуждения и регистрации фотонов флуоресценции) либо в промежутке времени между двумя последовательными измерениями в том же спектральном интервале (молекулы типа 3; см., например, [1,7]).

Понятно, что для исследования СД в СОМ в основном выбираются молекулы третьего типа. Вопрос о том, в какой мере они представительны для всей совокупности примесных молекул в образце, практически до сего времени не обсуждался. Очевидно, что они не обязательно представительны, а в деталях заведомо не представительны даже для молекул третьего типа: индивидуальные черты каждой примесной молекулы, формируемые окружающей ее матрицей, соседними примесями и дефектами (примесь того же сорта, другие точечные, линейные, поверхностные дефекты) ярко и индивидуально проявляются в СОМ.

Высокая индивидуальность примесных центров означает, что в СОМ привычными для теории обычной спектроскопии приемами усреднения можно пользоваться далеко не всегда. Фактически разумность усреднения по различным конфигурациям дефектов и других элементов неоднородного строения требует рассмотрения и доказательства в каждой конкретной задаче. Например, если молекула взаимодействует даже с большим числом двухуровневых систем (в данной работе этот термин используется как обобщенное название для множества дефектов весьма различной природы), то одна из них расположена наиболее близко и оказывает в случае изменения своего состояния существенно преобладающее влияние, другая расположена несколько дальше, но может быть подвергнута более частым изменениям своего состояния, вызванным процессом ДНО. Отметим, что в случае другого распространенного варианта спектроскопии БФЛ — выжигания устойчивых спектральных провалов — в процессе участвует много примесных молекул и усреднение применимо более широко, но и здесь надо иметь в виду сказанное выше.

Общепризнано, что СОМ — весьма чувствительный зонд для детального исследования примесной молекулы и ее окружения на индивидуальном уровне; в этом сила и значение СОМ. При этом "окружение" — это не только 1–2 ближайших слоя соседних молекул матрицы, а намного более обширная область. К примеру, изменение энергии взаимодействия между двумя дипольными молекулами, даже при расстоянии между ними 50–100 nm, может сдвинуть частоту БФЛ на величину, сравнимую с ее однородной шириной Γ_h . Следует напомнить, что дипольное взаимодействие сильно зависит от взаимной ориентации диполей — достаточно лишь поворота оси одного из них, чтобы взаимодействие изменилось заметно для СОМ.

2. Экспериментальные спектры и обсуждение

В работе [8] приведены спектры СОМ, измеренные при T = 1.7 К для относительно устойчивого индивидуального примесного центра, образованного молекулой террилена в н-декане (Tr–C₁₀). Для этой системы была сделана грубая оценка, согласно которой подобной устойчивостью, позволяющей в течение нескольких часов наблюдать близкую к лоренцевой БФЛ определенного примесного центра в пределах узкого фиксированного спектрального интервала, обладает приблизительно один центр из 30. Следует отметить весьма низкую концентрацию молекул террилена в нашем образце, составлявшую около 10^{-7} mol/l.

Интересный пример проявления спектральной неустойчивости в $Tr-C_{10}$ и ее эволюции во времени показан на рисунке, где приведено несколько спектров СОМ, измеренных для фиксированной точки на объекте и одного и того же спектрального интервала длиной около 2 GHz в разные моменты времени. Экспериментальные условия измерения спектров и характеристики объекта совпадают с описанными в [8].

На рисунке (a) приведены три спектра (Sp.1–Sp.3), последовательно измеренные с интервалом в несколько минут, начиная с момента времени t = 0; на рисунке (b) — три спектра (Sp.4–Sp.6), измеренные аналогичным образом по прошествии определенного промежутка времени, начиная с момента $t = 82 \min$. Время регистрации одного спектра составляло около 200 s. Во всех спектрах наблюдаются две стабильные линии А и В, относимые нами к одиночным примесным молекулам террилена, и (также относимая к одиночной молекуле) спектральная особенность С, на интерпретации которой мы остановимся далее. Линии А и В хорошо описываются лоренцевым контуром, полуширина которого сохраняется с точностью около 5%, составляя $65.4 \pm 2.6 \,\mathrm{MHz}$ A и 54.6 \pm 2.8 MHz для B. Расстояние между для линиями А и В сохраняется постоянным с точностью до нескольких MHz как для спектров на рисунке (a), так и для спектров на рисунке (b), что с большой вероятностью свидетельствует об отсутствии для молекул А и В заметных спектральных прыжков, проявляющихся на временных интервалах порядка 10 min. За время же порядка 70 min, прошедшее между двумя сериями измерений, произошло скачкообразное увеличение расстояния между линиями A и B на $\sim 80 \,\mathrm{MHz}$, повидимому, вызванное спектральным прыжком линии А. В этом случае линия А, очевидно, соответствует молекуле типа 3, линия В — молекуле типа 1.

На рисунке в частотную координату спектров Sp.2–Sp.6 внесена поправка сдвига с целью компенсации аппаратурной ошибки (неопределенность до ± 60 MHz в измерении абсолютной частоты лазера в момент начала нового сканирования, см. [8]) в предположении, что линия В стабильна и ее можно использовать как репер с фиксированной частотой.

Спектры возбуждения флуоресценции террилена в н-декане при T = 1.7 К, измеренные для одного и того же спектрального интервала в разные моменты времени. Концентрация примеси составляет около 10^{-7} mol/l; толщина образца $1-3 \mu$ m; интенсивность возбуждения — около 0.5 W/cm². Началу сканирования лазера (частота 0) соответствует 17422.13 cm⁻¹ ($\lambda \approx 573.98$ nm). Лазер сканировался со скоростью 10 MHz/s; спектральное разрешение 2 MHz. Каждому спектру соответствует свой параметр t — время, прошедшее с начала измерения первого спектра (Sp.1) до момента начала измерения данного спектра: a — начальная серия измерений; b — вторая серия измерений с началом при t = 82 min. В спектрах наблюдаются стабильные линии одиночных примесных молекул террилена A и B, а также нестабильная на начальном этапе линия C.

Физика твердого тела, 2000, том 42, вып. 3

В трех спектрах на рисунке (a) спектральная особенность C не описывается лоренцевым контуром. Однако она содержит пики, которые можно описать как лоренциан с резко обрезанным красным или синим крылом. Это особенно хорошо видно в Sp.3, где C содержит три острых пика.

Согласно нашей интерпретации, мы имеем здесь дело со спектрально нестабильной линией примесной молекулы C, оценочно совершающей в среднем один прыжок за ~ 10 s. Наблюдаемое в спектре Sp.3 "расщепление" спектральной особенности C на несколько компонент свидетельствует о том, что молекула C или ситуация в ее окрестности менялись не только за 7 min, прошедших между измерениями спектров Sp.2 и Sp.3, но и во время измерения линии C, и что по крайней мере часть из упомянутых спектральных прыжков происходит на расстояния менее 100 MHz.

Такая интерпретация подтверждается спектрами на рисунке (b), снятыми позже. В них вместо "обрезанных лоренцианов" наблюдается линия C, удовлетворительно описываемая лоренцевым контуром, причем расстояние между линиями B и C сохраняется постоянным с точностью до нескольких MHz. Если на спектрах Sp.4 и Sp.5 в контуре линии C с полушириной около 70 MHz можно еще различить следы малых скачков частоты линии, то на последнем в серии измерений спектре Sp.6 (измерен через 78 min после Sp.3) контур этой линии вполне симметричен и хорошо описывается лоренцианом с полушириной всего 54 MHz.

Описанная выше эволюция спектрального поведения линии одиночной примесной молекулы С в спектрах Sp.1-Sp.6 (рис. 1) подтверждает нетривиальную, глубоко индивидуальную природу спектральной диффузии, обусловленной динамикой неоднородностей. Поведение БФЛ С во времени можно понять, если предположить, что в какой-то момент времени до начала измерений (t < 0) в "сфере чувствительности" молекулы С произошел акт "изменения динамической неоднородности", например сдвиг дислокации или поворот диполя соседней примеси, положившие начало "беспокойному" периоду времени, в течение которого сравнительно легко происходят последующие быстрые процессы изменений. Последние и приводят к "расщеплению" линии и к контуру в виде "однобокого лоренциана". За время порядка 1 h молекула и ее "сфера чувствительности" "успокаиваются".

Дальнейшее рассмотрение динамической неоднородности, в частности процесса фёрстеровской передачи энергии, имеется в [6].

Авторы признательны за поддержку направления спектроскопии одиночных молекул и данного исследования Эстонскому фонду науки, фонду Александра фон Гумбольта и Международному центру научной культуры — Мировой лаборатории.

Список литературы

- Single-Molecule Optical Detection. Imaging and Spectroscopy / Ed. by Th. Basché, W.E. Moerner, M. Orrit, U.P. Wild. VCH, Weinhiem (1996).
- [2] W.E. Moerner, L. Kador. Phys. Rev. Lett. 62, 2535 (1989).
- [3] M. Orrit, J. Bernard. Phys. Rev. Lett. 65, 2716 (1990).
- [4] L. Kador. Phys. Stat. Sol. B189, 11, 11 (1995).
- [5] V. Palm, K.K. Rebane, A. Suisalu. J. Phys. Chem. 98, 9, 2219 (1994).
- [6] К.К. Rebane, подготовлено к печати.
- [7] W.E. Moerner, T. Plakhotnik, T. Irngartinger, M. Croci, V. Palm, U.P. Wild, J. Phys. Chem. 98, 30, 7382 (1994).
- [8] К.К. Ребане, О. Олликайнен, В.В. Пальм. Оптика и спектроскопия. 84, *3*, 431 (1998); [English translation: К.К. Rebane, O. Ollikainen, V.V. Palm. Optics and Spectroscopy. 84, *3*, 374 (1998)].