Двухфотонная поляризационная спектроскопия кристаллов LiF с лазерными F₂-центрами окраски

© И.В. Ермаков, Т.Т. Басиев, К.К. Пухов, В. Геллерманн*

Научный центр лазерных материалов и технологий института общей физики Российской академии наук, 117942 Москва. Россия * Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA E-mail: pukhov@lst.gpi.ru

(Поступила в окончательном виде 6 сентября 1999 г.)

Измерены и рассчитаны зависимости поляризации и интенсивности люминесценции кристаллов LiF: F2 от поляризации мощного лазерного излучения ($\lambda_{ex} = 1064 \, \mathrm{nm}$), вызывающего двухфотонное возбуждение F2-центров. Показано, что при двухфотонном переходе происходит возбуждение неизвестного ранее электронного уровня F_2 -центров с симметрией A_{1g} .

Работа поддержана Российским фондом фундаментальных исследований (проект № 97-02-17699) и Программой фундаментальной спектроскопии министерства науки и технологии Российской Федерации.

Кристаллы LiF с центрами окраски (ЦО) являются перспективными кристаллическими средами для получения перестраиваемого излучения в видимой и ближней ИК областях спектра [1]. В настоящей работе продолжено исследование энергетической структуры ЦО в кристаллах LiF методами двухфотонной лазерной спектроскопии.

В [2] была предложена и апробирована на F_3^+ -ЦО в LiF методика двухфотонной поляризационной спектроскопии, являющаяся расширением метода поляризованной люминесценции Феофилова [3,4] на процессы люминесценции, возбуждаемой двумя квантами света. Такое расширение метода Феофилова позволяет обнаруживать и исследовать спектральные характеристики электронных уровней, которые по ряду причин (например, в силу симметрийного запрета) не могут быть обнаружены методами однофотонной спектроскопии. Указанная выше методика применена в данной работе к исследованию нейтральных F₂-ЦО в кристалле LiF, в результате чего обнаружено наличие и установлен тип симметрии ранее неизвестного электронного уровня.

В настоящее время можно считать установленным, что F2-центры, обусловливающие мощные М-полосы поглощения в синезеленой и полосы люминесценции в красной областях спектра (табл. 1), представляют собой собственные дефекты, состоящие из двух F-центров, расположенных в соседних узлах анионной подрешетки. Они ориентированы вдоль кристаллографических направлений типа [110], являющихся в кубических ионных кристаллах поворотными осями симметрии второго порядка С2. Такая модель убедительно подтверждается исследованиями поляризованной люминесценции [3-5]; дихроизма поглощения, наведенного фотохимически активным светом [6]; электрических [7] и магнитных [8] свойств кристаллов LiF и других щелочногалоидных кристаллов с F2-центрами. Таким образом, F2-ЦО имеет три взаимно перпендикулярные оси второго порядка C_2 , три взаимно перпендикулярные плоскости симметрии σ , центр симметрии I, а потому принадлежит к точечной группе симметрии D_{2h}. Классифицируя электронные состояния F2-ЦО по неприводимым представлениям группы D_{2h} , можно установить, что из основного состояния (с симметрией A_{1g}) разрешены электродипольные переходы в возбужденные состояния B_{1u} , B_{2u} и B_{3u} [9]. Следовательно, в спектре поглощения должны наблюдаться три полосы; дипольные моменты соответствующих переходов ориентированы вдоль направлений [100], [110] и [111] (в дальнейшем будем считать ось z оптического центра направленной по [100], а ось у — по [110]).

В табл. 1 приведены спектральные характеристики F_2 -ЦО в LiF, там же для сравнения приведены спектральные характеристики F_2^- - и F_3^+ -ЦО.

Таблица 1. Спектральные характеристики некоторых центров окраски в кристаллах LiF. λ_m — длина волны в максимуме полосы, $\Delta
u$ — ширина полосы, σ_m — сечение, au — время жизни, η — квантовый выход люминесценции, λ_{ZPL} — длина волны для бесфононной линии

Центры	Поглощение			Люминесценция					
окраски	$\lambda_m,$ nm	$\Delta u, \mathrm{cm}^{-1}$	$\sigma_m \cdot 10^{17}, \mathrm{cm}^2$	λ_m, nm	$\Delta u, { m cm}^{-1}$	$\sigma_m \cdot 10^{17}, \mathrm{cm}^2$	$ au, \mathrm{ns}$	$\eta,\%$	λ_{ZPL}
F_2	447	1500	4	675	2250	$7\cdot 10^{-17}$	17	~ 100	538
F_2^-	960	1700	7	1140	1400	$7.5 \cdot 10^{-17}$	50-68	~ 30	1040
$\bar{F_3^+}$	452	2500	7	538	2000	$8.7\cdot10^{-17}$	11	~ 100	487.5

Методика эксперимента и экспериментальные результаты

Измерение поляризационных зависимостей двухфотонно возбуждаемой люминесценции F2-ЦО в кристаллах LiF было проведено в продольной схеме возбуждения-регистрации [3]. Исследуемый образец пластинка из кристалла LiF (содержащего F2-ЦО), вырезанная параллельно одной из трех основных кристаллографических плоскостей (100), (110) и (111). Линейно поляризованное излучение YAG: Nd³⁺-лазера (λ_{ex} = 1064 nm) для двухфотонного возбуждения люминесценции направлялось по нормали к поверхности пластинки-образца. Люминесценция F2-ЦО $(\lambda_{lum} = 650 \,\mathrm{nm})$, распространяющаяся вдоль направления возбуждающей световой волны, выделялась с помощью светофильтров и линзой собиралась на поверхность фотокатода фотоэлектронного умножителя. Измерение азимутальных зависимостей состояло в определении зависимости суммарной интенсивности люминесценции и степени ее поляризации от угла поворота пластинки образца (φ) в плоскости, перпендикулярной направлению возбуждения и регистрации.

Теоретическое описание результатов эксперимента и обсуждение

Для сопоставления с экспериментальными данными азимутальные зависимости поляризации и интенсивности двухфотонно возбуждаемой люминесценции были рассчитаны и представлены в аналитическом виде в соответствии с методом Феофилова [3–5]. Здесь мы вкратце опишем методику вычислений. В общем виде азимутальная зависимость интенсивности люминесценции с поляризацией \mathbf{E}_e , возбуждаемой светом с поляризацией \mathbf{E}_a , имеет вид

$$I(\varphi, \alpha) = \text{const} \sum_{s} W_a^s(\varphi) W_e^s(\alpha), \qquad (1)$$

где $W_a^s(\varphi)$ — вероятность возбуждения ЦО, ориентированного вдоль *s*-й кристаллической поворотной оси симметрии второго порядка (для F_2 -ЦО s = 1-6), $W_e^s(\alpha)$ — вероятность излучения ЦО той же ориентации, $\varphi(\alpha)$ — угол между вектором \mathbf{i}_a (\mathbf{i}_e) электрического поля волны возбуждения \mathbf{E}_a (люминесценции \mathbf{E}_a) и единичным вектором, жестко связанным с кристаллической решеткой и являющимся реперным направлением для возбуждения (люминесценции). Выбор направления векторов \mathbf{i}_a и \mathbf{i}_e определяется геометрией эксперимента, и в случае продольной схемы возбуждения — регистрации, в которой были проведены измерения, эти векторы совпадают ($\mathbf{i}_a = \mathbf{i}_e$).

Интенсивность люминесценции, распространяющейся вдоль направления наблюдения, запишется в виде

$$I(\varphi) = \int_{0}^{\pi} d\alpha I(\varphi, \alpha).$$
 (2)

Азимутальная зависимость степени поляризации наблюдаемого излучения по определению [3] есть

$$P(\varphi) = \frac{I(\varphi, 0) - I(\varphi, \pi/2)}{I(\varphi, 0) + I(\varphi, \pi/2)},$$
(3)

где $I(\varphi, 0)$ — интенсивность измеряемой люминесценции с поляризацией, параллельной поляризации возбуждающей волны, а $I(\varphi, \pi/2)$ — интенсивность люминесценции с поляризацией в направлении, перпендикулярном направлению вектора поляризации возбуждающего излучения.

Теоретико-групповой анализ двухфотонных переходов с основного уровня A_{1g} показывает [10], что разрешенные двухфотонные переходы для F_2 -центров (симметрия центров D_{2h}) при возбуждении люминесценции линейно поляризованным светом от одного лазерного источника имеют слеующую угловую зависимость:

$$W_a(A_{1g} \to A_{1g}) \sim \left(l_a^2 + \lambda_1 m_a + \lambda_2 n_a^2\right)^2, \qquad (4)$$

$$W_a(A_{1g} \to B_{1g}) \sim (l_a m_a)^2, \tag{5}$$

$$W_a(A_{1g} \rightarrow B_{2g}) \sim (l_a n_a)^2,$$
 (6)

$$W_a(A_{1g} \to B_{3g}) \sim (m_a n_a)^2. \tag{7}$$

В нашем анализе предполагается, что излучение происходит с уровня B_{3u} и соответственно угловая зависимость люминесценции определяется выражением

$$W_e(B_{3u} \to A_{1g}) \sim n_e^2. \tag{8}$$

В уравнениях (4)–(8) (l_a, m_a, n_a) — проекции электрического вектора \mathbf{E}_a , возбуждающего излучение, n_e *z*-компонента электрического вектора \mathbf{E}_e люминесценции. Нами были проанализированы азимутальные зависимости $I(\varphi)$ и $P(\varphi)$ для всех возможных каналов (4)–(7) двухфотонного возбуждения люминесценции. Было найдено, что согласие с экспериментальными результатами дает только зависимость (4) с $|\lambda_2| \gg |\lambda_1|$, 1. Аналитические выражения для $I(\varphi)$ и $P(\varphi)$ для этого случая представлены в табл. 2.

Рисунок дает представление о степени согласия экспериментальных и теоретических зависимостей $I(\varphi)$ и $P(\varphi)$. Как показало компьютерное моделирование, зависимости $I(\varphi)$ и $P(\varphi)$, задаваемые выражениями (5)–(7), качественно расходятся с экспериментальными. Это дает основание утверждать, что новый обнаруженный электронный уровень F_2 -ЦО в кристалле LiF имеет симметрию A_{1g} . (Далее возбужденное состояние, имеющее симметрию A_{1g} будем обозначать символом A_{1g}^*).

Направление k	Поглошение	Люминесценция							
Паправление к	Поглощение	интенсивность	поляризация						
$\mathbf{k} \perp (100)$	$\frac{9-\cos 4\varphi}{10}$	$\frac{5-\cos 4\varphi}{6}$	$\frac{10-6\cos 4\varphi}{15-3\cos 4\varphi}$						
k ⊥ (110)	$\frac{117 - 12\cos 2\varphi - 9\cos 4\varphi}{128}$	$\frac{129 - 28\cos 2\varphi - 5\cos 4\varphi}{152}$	$\frac{172 - 49\cos 2\varphi - 20\cos 4\varphi - 39\cos 6\varphi}{258 - 56\cos 2\varphi - 10\cos 4\varphi}$						
			56 12 000 600						

1

Таблица 2. Азимутальные зависимости двухфотонного поглощения $A_{1g} \rightarrow A_{1g}$ азимутальные зависимости $I(\varphi)$ и $P(\varphi)$ люминесценции $B_{3u} \rightarrow A_{1g}$ при двухфотонном возбуждении $A_{1g} \rightarrow A_{1g}$ ЦО симметрии D_{3h}

Примечание. Вектор к — волновой вектор падающего излучения.

1

 $k \perp (111)$

Исходя из этого, понятно, почему он не проявляется при однофотонном возбуждении люминесценции: однофотонный электродипольный переход $A_{1g} \rightarrow A_{1g}^*$ запрещен симметрийными правилами отбора.

Анализ полученных результатов позволяет также сделать вывод о природе промежуточного (виртуального) состояния при двухфотонном возбуждении $A_{1g} \rightarrow A_{1g}^*$. Действительно, угловая зависимость (4) обязана своим происхождением общему выражению для двухфотонного перехода $A_{1g} \rightarrow A_{1g}^*$, возбужденного одним лазерным источником, а именно

$$W(A_{1g} \to A_{1g}^*) \sim \left| l_a^2 \frac{\langle A_{1g} | x | B_{3u} \rangle \langle B_{3u} | x | A_{1g}^* \rangle}{\Delta(B_{3u}) - \hbar \omega} + m_a^2 \frac{\langle A_{1g} | y | B_{2u} \rangle \langle B_{2u} | y | A_{1g}^* \rangle}{\Delta(B_{2u}) - \hbar \omega} + n_a^2 \frac{\langle A_{1g} | z | B_{1u} \rangle \langle B_{1u} | z | A_{1g}^* \rangle}{\Delta(B_{1u}) - \hbar \omega} \right|^2.$$
(9)

В выражении (9) $\Delta(B_{1u}), \Delta(B_{2u}), \Delta(B_{3u})$ — энергии электронных уровней $B_{1u}, B_{2u}, B_{3u}; \hbar \omega$ — энергия кванта возбуждения; A_{1g} и A_{1g}^* — основное и возбужденное состояния соответственно. Из того факта, что согласие экспериментальных и теоретических поляризационных зависимостей требует выполнения условия $|\lambda_2| \gg |\lambda_1|, 1$ в выражении (4), следует, что в вероятность двухфотонного перехода вносит основной вклад промежуточное состояние В_{1и} и первыми двумя членами под знаком модуля в выражении (9) можно пренебречь. Этот факт согласуется с современными представлениями о положении электронных уровней B_{1u} , B_{2u} , B_{3u} (максимум полосы поглощения $\lambda_{\max}(A_{1g} \rightarrow B_{1u}) = 447\,\mathrm{nm}, a$ максимум полосы поглощения $\lambda_{\max}(A_{1g} \rightarrow B_{2u}, B_{3u}) = 310 \, \mathrm{nm}$). Учитывая, что в нашем случае энергия кванта возбуждения $\hbar \omega \approx 10\,000\,{
m cm}^{-1}$ ($\lambda_{ex} = 1064\,{
m nm}$), находим $\Delta(B_{3u}) - \hbar \omega \approx 10\,000\,\mathrm{cm}^{-1}$ и $\Delta(B_{1u}) - \hbar \omega$ $\approx \Delta(B_{2u}) - \hbar\omega \approx 20\,000\,\mathrm{cm}^{-1}$, т.е. энергия кванта

84

Экспериментальные азимутальные зависимости поляризации (светлые кружки) и интенсивности люминесценции (темные кружки) кристаллических пластинок LiF с F_2 -центрами окраски, вырезанных параллельно кристаллографическим плоскостям (100), (110) и (111) при возбуждении излучением YAG:Nd³⁺-лазера ($\lambda_{ex} = 1064$ nm). Сплошные линии соответствуют теоретическим расчетам поляризации и интенсивности люминесценции F_2 -центров при двухфотонном возбуждении.

возбуждения значительно ближе к энергии уровня B_{3u} , чем к энергиям уровней B_{1u} и B_{2u} . Соответственно как видно из структуры выражения (9), уже за счет энергетического знаменателя $\Delta -\hbar\omega$ вклад в вероятность двухфотонного перехода промежуточного состояния B_{3u} превышает (при прочих равных условиях) вклады от промежуточных состояний B_{1u} и B_{2u} . Кроме того, как следует из экспериментальных результатов работы [11], сила осциллятора перехода $A_{1g} \to B_{1u}$ на порядок больше сил осцилляторов переходов $A_{1g} \to B_{2u}$, $A_{1g} \to B_{3u}$.

Если исходить из представлений, что молекулярные орбитали F_2 -ЦО формируются из водородоподобных атомных орбиталей, локализованных на вакансиях, то в этом случае можно предположить, что возбужденное состояние A_{1g}^* образовано из водородоподобных атомных орбиталей 1s и 2s в отличие от основного состояния A_{1g} образованного атомными орбиталями 1s.

Таким образом, в данной работе впервые методами поляризационной люминесценции при двухфотонном возбуждении исследована и выявлена симметрия промежуточных и конечных электронных уровней, участвующих в двухфотонном возбуждении *F*₂-центров окраски под действием ИК лазерного излучения.

Список литературы

- T.T. Basiev, S.B. Mirov. Room Temperature Tunable Color Center Lasers. Vol. 16. Gordon and Breach Science Publishers, Harwood Academic Publishers, Switzerland (1994). 160 p.
- [2] Т.Т. Басиев, И.В. Ермаков, К.К. Пухов. ФТТ 39, 8, 1373 (1997).
- [3] П.П. Феофилов. Поляризованная люминесценция атомов, молекул и кристаллов. М. (1953). 288 с.
- [4] П.П. Феофилов, А.А. Каплянский. УФН 76, 2, 201 (1962).
- [5] П.П. Феофилов. Докл. АН СССР 92, 4, 743 (1953).
- [6] F. Okamoto. Phys. Rev. 124, 1090 (1961).
- [7] G. Jacobs. J. Chem. Phys. 27, 217 (1957).
- [8] N.W. Lord. Phys. Rev. 106, 1100 (1957).
- [9] Г. Герцберг. Электронные спектры и строение многоатомных молекул. Мир, М. (1969).
- [10] T.R. Bader, A. Gold. Phys. Rev. 171, 997 (1968).
- [11] С.А. Михнов, В.С. Калинов, С.И. Овсейчук, А.В. Салтанов. Труды 5-й Международной Конференции "Перестраиваемые твердотельные лазеры". Ч. 1. Новосибирск (1990). С. 163.