Акустооптические и упругие свойства слоистых кристаллов КҮ(МоО₄)₂

© Л.А. Кулакова

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: L.Kulakova@shuvpop.ioffe.rssi.ru

(Поступила в Редакцию 17 мая 1999 г.)

Получены данные об акустических (поглощение и скорость звука), оптических (коэффициенты преломления и оптическое поглощение) и фотоупругих (коэффициенты акустооптического качества, фотоупругие постоянные) свойствах кристаллов KY(MoO₄)₂. Показано, что анизотропия сил связи приводит не только к существенной анизотропии акустических и фотоупругих свойств, но и обусловливает аномально высокую упругую нелинейность в направлении оси *Y*, перпендикулярной плоскостям спайности.

Слоистые кристаллы, обладая ярко выраженной анизотропией механической прочности, являются удобным объектом для изучения влияния анизотропии сил связи на физические свойства твердых тел. В ряде работ [1] было показано, что это влияние на тепловые, оптические, электрические и другие свойства столь велико, что позволяет говорить о двумерности строения таких кристаллов.

Влияние анизотропии сил связи на фотоупругий эффект было подробно изучено на примере гексагональных слоистых кристаллов GaSe [2]. Авторами [2] было показано, что слоистость структуры приводит к двумеризации экситонной волновой функции. Однако данные об особенностях фотоупругих свойств других слоистых кристаллов носят весьма фрагментарный характер.

Акустические свойства различных слоистых кристаллов изучались ранее импульсным эхо-методом [3]. В силу ограничений, связанных с интегральным характером такого метода (что особенно существенно для слоистых кристаллов с возможной дефектностью их структуры), полученные результаты нуждаются в уточнении акустооптической методикой, позволяющей проводить локальные измерения.

Данная работа посвящена изучению фотоупругих и акустических свойств слоистых кристаллов КУ(МоО₄)₂. Кристаллы имеют ромбоэдрическую симметрию (D_{2h}) и обладают совершенной спайностью в плоскости XZ и менее совершенной спайностью в плоскости ХУ [4]. Обладая высокой оптической прозрачностью в видимой области спектра, эти кристаллы являются прекрасным объектом для изучения особенностей акустического поглощения в слоистых кристаллах акустооптическим методом. Нами получены данные об оптических свойствах, значениях акустооптических эффективностей и компонент фотоупругого тензора этих кристаллов. Изучены особенности распространения акустических волн. Акустооптическим методом измерено поглощение продольных и поперечных звуковых волн в диапазоне частот 300-1600 MHz, получены данные о значениях скорости различных звуковых волн.

1. Методика измерений

В работе были использованы монокристаллы, выращенные в Институте неорганической химии Сибирского отделения РАН. Оптически однородные образцы размером $4 \times 4 \times 10$ mm ориентировались вдоль кристаллографических осей. Грани, перпендикулярные слоям, обрабатывались тонкой шлифовкой с последующей оптической полировкой, параллельные слоям — отслаиванием разрушенного слоя. Звук возбуждался резонансными пьезопреобразователями из ниобата лития, приклеиваемыми к соответствующей грани образца посредством склейки Nonaq Stopcock. Использовались как основная частота преобразователя (f = 30 MHz), так и его высшие гармоники.

В акустооптических измерениях использовался метод брэгговской дифракции света на акустической волне. Для измерений акустооптической добротности M_2 использовался традиционный метод Диксона [5], в качестве источника света — Не–Ne лазер ($\lambda = 0.63 \,\mu$ m), как эталон — монокристаллы GaP.

Значения абсолютных величин коэффициентов преломления получены нами (с точностью $\sim 10^{-2}$) из измерений величины смещения луча лазера из-за преломления при прохождении (угол падения 45°) плоскопараллельного образца КУ(MoO₄)₂ соответствующей геометрии.

Скорость звуковых волн вычислялась с точностью до 10^{-3} из данных измерения времени между соседними эхо-импульсами методом совмещения СВЧ заполнения этих импульсов.

2. Результаты и их обсуждение

Известно, что эффективность брэгговской дифракции света на ультразвуковых волнах определяется параметром акустооптической добротности M_2

$$I_1 = 1/2 I_0 M_2 P \left(\pi d / (\lambda \cos \theta_i) \right)^2, \tag{1}$$

$$(M_2)_{ik} = n_i^6 p_{ik}^2 / (\rho V_k^3), \qquad (2)$$

где *I*₁, *I*₀ — интенсивности дифрагированного и падающего света соответственно; *P* — интенсивность звука;

Л.А. Кулакова

Значения параметров акустооптической добротности $(M_2)_{ik}$, фотоупругих модулей (p_{ik}) , коэффициентов преломления (n_i) , коэффициентов оптического поглощения β_i и скоростей звука (V_k) ; $\rho = 3.9 \,\mathrm{g} \cdot \mathrm{cm}^{-3}$, $\lambda = 0.63 \,\mu\mathrm{m}$

ik 1	$M_{ik},$ $0^{-18} s^3 g^{-1}$	p_{ik}	n _i	$\beta_i,$ cm ⁻³	$\frac{V_k}{10^5 \mathrm{cm}\cdot\mathrm{s}^{-1}}$
11	0.5	0.092	1.8342	0.015	5.08
12	21	0.253			2.87
13	1.93	0.108			3.6
21	4.15	0.242			
22	28	0.267	1.7658	0.1	
33	3.86	0.21	1.7474	0.1	
44					1.86
55					2.47
66	36	0.12			1.5

 λ — длина волны света; d — ширина акустического пучка; θ_i — угол падения; n_i — коэффициент преломления; p_{ik} — компонента фотоупругого тензора; ρ — плотность кристалла; V_k — скорость звуковой волны; i, k = 1-6: i — индекс поляризации света, k — индекс деформации в матричном представлении. Поскольку M_2 включает в себя анизотропию как упругих, так и оптических свойств, анизотропия этого параметра наиболее полно отражает влияние анизотропии сил связи на фотоупругий эффект.

Результаты измерений параметра акустооптической добротности, представленные в таблице, показывают, что наибольший фотоупругий эффект, вызываемый продольной деформацией, наблюдается в направлении $Y(M_2)_{22}$, т.е. поперек основных плоскостей спайности, как и в кристаллах GaSe [2]. Однако наибольшая акустооптическая эффективность (М2)66 наблюдается для деформации сдвига (S₆) слоев относительно друг друга. Следует отметить определенную уникальность этого результата: до сих пор нам не были известны материалы, в которых бы эффективность дифракции света на сдвиговых волнах была бы выше, чем на продольных. При исследовании фотоупругого эффекта в слоистых кристаллах GaSe [2] дифракцию света на соответствующих звуковых волнах (деформации S₄ и S₅) наблюдать не удалось. Из-за большой разницы $(n_0 - n_e \sim 0.3)$ коэффициентов преломления в этих кристаллах дифракция возможна в области высоких частот звука ($f \sim 1.5 \,\text{GHz}$), а значит, и больших (~ 70°) углов дифракции, что существенно затрудняет наблюдение эффекта.

Исследование дифракции света на сдвиговых (S_6) волнах в кристаллах КҮ(MoO_4)₂ важно не только с точки зрения обнаружения высокой акустооптической эффективности. Оно позволило нам определить с достаточно высокой степенью точности величину разности коэффициентов преломления $\Delta n_{12} = 0.0683$ ($\Delta n_{12} = n_x - n_y$), $\Delta n_{13} = 0.0867$ ($\Delta n_{13} = n_x - n_z$) и $\Delta n_{23} = 0.0184$ ($\Delta n_{23} = n_x - n_z$). Для этого мы использовали полученные нами экспериментальные данные о геометрии дифракции света на поперечном звуке S_6 (рис. 1) и

известные [6] соотношения для углов (вне образца) падения θ_i , дифракции θ_d и рассеяния θ_s в условиях анизотропной брэгговской дифракции

$$\sin \theta_{i} = \lambda f \left[1 + n \,\Delta n V^{2} / (f^{2} \lambda^{2}) \right] / 2V,$$

$$\sin \theta_{d} = \lambda f \left[1 - n \,\Delta n V^{2} / (f^{2} \lambda^{2}) \right] / 2V,$$

$$\theta_{s} = \theta_{i} + \theta_{d},$$
(3)

где $n = (n_i + n_d)/2$, $\Delta n = (n_i - n_d)$.

В наших измерениях $n_i = n_2$, $n_d = F(n_1, n_3)$. При $\theta_i = 0$ $n_d = n_1$ и, как следует из (3), $\Delta n = f_0^2/2nV^2$. Измерив f_0 и зная величину *n*, можно вычислить значение

Рис. 1. Геометрия дифракции света на сдвиговой звуковой волне (S_6) ; $I - \theta_i$, $2 - \theta_d$, $3 - \theta_s$.

Рис. 2. Частотная зависимость коэффициента поглощения продольных $(1 - S_2, 3 - S_1)$ и поперечных $(2 - S_6)$ звуковых волн.

Рис. 3. Зависимость коэффициента поглощения продольных волн (S_2 , f = 800 MHz) от входной интенсивности.

 Δn_{21} . Осуществляя подгонку расчетных и экспериментальных данных (рис. 1) при $\theta_i \neq 0$, можно вычислить и значение Δn_{23} .

Значение n = 1.8, использованное при вычислениях Δn , получено нами из измерений смещения луча лазера из-за преломления при прохождении (угол падения 45°) плоскопараллельного образца КУ(MoO₄)₂ соответствующей геометрии. Окончательные значения n_i представлены в таблице.

Полученные нами данные о скорости звука (см. таблицу) показывают, что упругие свойства отчетливо коррелируют с анизотропией сил связи: чем больше силы связи, тем выше скорость звука. Используя значения определенных нами акустических и оптических параметров (см. таблицу) и приведенного выше соотношения (2) для $(M_2)_{ik}$, мы вычислили величины компонент p_{ik} фотоупругого тензора. Анизотропия тензора фотоупругости, как видно из этих данных (см. таблицу), так же, как и упругие свойства, однозначно связана с анизотропией сил связи, однако качественно носит прямо противоположный характер: чем слабее связь, тем выше значения p_{ik} , т.е. тем сильнее изменяется поляризуемость кристалла под влиянием деформации.

Результаты измерений поглощения звука в исследуемых кристаллах в интервале частот 300-1800 MHz представлены на рис. 2. Частотные зависимости для всех исследованных случаев имеют вид, близкий к квадратичному, характерному для ахиезеровского механизма решеточного поглощения в кристаллах. Соотношение коэффициентов поглощения для различных типов волн прямым образом отражает соотношение сил связи: наибольшее поглощение наблюдается в направлении наиболее слабых связей — У-направление. Однако обращает на себя внимание относительно небольшая величина поглощения для всех типов волн. Особенно это удивительно как для продольных, так и для сдвиговых волн, распространяющихся в направлении оси У (перпендикулярно плоскости основных слоев). Из-за слабой связи между слоями можно было бы ожидать более высокого значения вязкости, а значит, и поглощения упругих волн в этих кристаллах.

Особо следует остановиться на результатах исследования поглощения продольного звука (S_2), распространяющегося поперек слоев. Данные о поглощении

Рис. 4. Пространственное развитие спектра звукового потока (вдоль Y) при различных интенсивностях продольной звуковой волны на входе $(I_k/I_0 = 0.1$ соответствует интенсивности звука P = 5.3 W/cm²); I-7 — номера соответствующих звуковых гармоник.

Физика твердого тела, 2000, том 42, вып. 1

для этой волны, приведенные на рис. 2, получены в условиях очень малой интенсивности ($P < 0.1 \, {\rm W/cm^2}$) звука. При увеличении интенсивности поглощение начинает расти, мы видим резкую зависимость коэффициента поглощения от интенсивности звука (рис. 3), а в спектре акустического потока появляются и нарастают высшие гармоники (рис. 4). Картину пространственного развития спектра акустического потока мы приводим для более низкой частоты ($f = 334 \,\mathrm{MHz}$), поскольку с понижением частоты возможно наблюдение развития большего количества гармоник. При наблюдаемых уровнях дифракции в первом порядке возможны нелинейные акустооптические эффекты. Они могут приводить к перекачке интенсивности дифрагированного света в высшие порядки. Однако это должно приводить к обратному пространственному эффекту, и измеряемая величина поглощения должна уменьшаться при увеличении интенсивности звука. Поэтому очевидно, что при большой интенсивности звука в процессе его распространения происходит перекачка энергии в высшие гармоники из-за упругой нелинейности.

Для вычисления нелинейного коэффициента Γ [7] ($u_2 = 8\Gamma u_1^2 \Delta x k_1^2$, где u_1 , u_2 — амплитуда смещения соответствующей компоненты, k_1 — волновое число основной частоты) нами измерено развитие второй гармоники S_2 при невысоком уровне входного сигнала (рис. 4, *a*), что позволяет наблюдать участок линейного нарастания ее амплитуды. Из этого рисунка видно, что в кристаллах $KY(MoO_4)_2$ на линейном участке интенсивность второй гармоники возрастает на порядок на расстоянии менее 1 mm при интенсивности звука $P \approx 4 \text{ W/cm}^2$. Вычисления с использованием этих данных показали, что в *Y*-направлении упругая нелинейного коэффициента, по существующим [8] данным, не наблюдалось ни в одном из известных материалов.

Таким образом, в работе впервые получены данные об оптических, фотоупругих и акустических свойствах кристаллов $KY(MoO_4)_2$. Установлена их прямая корреляция с анизотропией сил связи. Из данных о геометрии анизотропной дифракции поперечных волн с высокой (10^{-4}) степенью точности вычислены значения разности основных компонент коэффициентов преломления.

Обнаружено, что в направлении, перпендикулярном плоскости слоя, распространение продольных волн носит существенно нелинейный характер, коэффициент поглощения соответствующих продольных волн в значительной степени зависит от интенсивности звука; линейный режим реализуется лишь при интенсивностях $< 0.1 \text{ W/cm}^2$. Значение нелинейного коэффициента имеет самую большую величину ($\Gamma \approx 40$) среди известных материалов.

Автор выражает благодарность А.А. Павлюку за предоставленные монокристаллы KY(MoO₄)₂, Ю.В. Илисавскому — за полезные обсуждения. Работа поддержана Российским фондом фундаментальных исследований (гранты № 95-02-04093-а, № 98-02-18305).

Список литературы

- [1] Г.Л. Беленький, В.Б. Стопачинский. УФН 140, 2, 233 (1983).
- [2] Н.С. Аверкиев, Ю.В. Илисавский, Л.А. Кулакова. ФТТ 38, 12, 3556 (1996); ФТТ 38, 12, 3570 (1996).
- [3] Ю.В. Илисавский, В.Л. Окулов, С.В. Ордин. Письма ЖТФ 12, 6, 377 (1986).
- [4] Р.Ф. Клевцов, С.В. Борисов. АН СССР 177, 6, 1333 (1967).
- [5] W. Dixon. IEEE Trans. **QE-3**, 87 (1967).
- [6] А.М. Дьяконов, Ю.В. Илисавский, Л.А. Кулакова. ФТТ 14, 1, 95 (1972).
- [7] Л.Н. Зарембо, В.А. Красильников. УФН 102, 4, 549 (1970).
- [8] О.Б. Гусев, В.В. Клудзин. Акустооптические измерения. Изд-во ЛГУ, Л. (1987). С. 52.