07 Лучевая модель волноводных режимов в многослойном градиентном волноводе

© Д.Г. Санников, Д.И. Семенцов, А.М. Шутый, А.В. Казакевич

Ульяновский государственный университет

Поступило в Редакцию 24 сентября 1998 г.

На основе лучевого и волнового подходов получены модовые дисперсионные уравнения и проводится анализ для планарной структуры с двумя волноведущими слоями, один из которых является градиентным.

При рассмотрении волноводного распространения света в диэлектрических волноводах широко используется лучевой подход, позволяющий на основе наглядных представлений геометрической оптики находить связь константы распространения с параметрами волноводной структуры и излучения [1]. При этом модовые дисперсионные уравнения (ДУ), получаемые лучевым и волновым способами, для волноводов со ступенчатым профилем диэлектрической проницаемости (ДП) совпадают как в случае одного [1], так и нескольких волноводных слоев [2,3]. Для градиентных волноводов с одним волноведущим слоем лучевой подход также используется, однако получаемые на его основе ДУ аналитически не совпадают с получаемыми из решения граничной задачи, что связано с приближенным характером лучевого подхода. В настоящей работе на основе лучевого и волнового подходов получены ДУ и проводится их сравнительный анализ для волноводной структуры с двумя волноведущими слоями, один из которых имеет градиентный профиль ДП.

Рассмотрим планарную структуру, состоящую из полубесконечной покровной среды с ДП ε_4 , волноведущих покровного слоя с ДП ε_3 и градиентного, созданного в приповерхностном слое подложки и имеющего следующий профиль ДП:

$$\varepsilon_2(x) = \varepsilon_1 + (\varepsilon_2 - \varepsilon_1) \exp(-x/a).$$
 (1)

Здесь ε_2 — значение ДП градиентного слоя на границе с покровным (x = 0), а ε_1 — ДП подложки ($x \gg a$), a — характерная тол-

18

щина градиентного слоя. Все величины ε_i приняты вещественными, что предполагает отсутствие поглощения во всех указанных средах. Положим $\varepsilon_4 \leq \varepsilon_1 < \varepsilon_2 < \varepsilon_3$, что соответствует реальным волноводным структурам с высокопреломляющим покрытием.

Волноводные режимы в рассматриваемой структуре реализуются в результате полного внутреннего отражения (ПВО) волны на границах волноведущих слоев. В градиентном слое оно происходит на его границе с покровным слоем и на каустике с координатой x_c , определяемой из условия $\beta^2 = k_0^2 \varepsilon_2(x_c)$, где β — постоянная распространения моды, $k_0 = 2\pi/\lambda$, λ — длина волны в вакууме. Два возможных режима каналирования излучения в рассматриваемой структуре определяются неравенствами

$$\sqrt{\varepsilon_1} k_0 \leqslant \beta \leqslant \sqrt{\varepsilon_2} k_0, \qquad \sqrt{\varepsilon_2} k_0 \leqslant \beta \leqslant \sqrt{\varepsilon_3} k_0. \tag{2}$$

Первый режим отвечает зигзагообразной моде, распространяющейся в покровном и градиентном слоях и затухающей в покровной среде и подложке на глубине $x > x_c$. Второй режим соответствует зигзагообразной моде, распространяющейся только в покровном слое и затухающей в покровной среде и в градиентном слое.

В рамках лучевого подхода модовое ДУ получается из условия поперечного фазового резонанса [1], которое для рассматриваемой структуры может быть представлено следующим образом:

$$2h_3L_3 + \delta_{34} + \delta_{32} = 2\nu\pi,\tag{3}$$

где ν — номер волноводной моды, L_3 — толщина покровного слоя, δ_{34} — сдвиг фазы волны при ПВО на границе покровный слой — покровная среда, а δ_{32} — фазовый сдвиг в системе градиентный слой — покровная среда (первый режим) или на границе покровный слой — градиентный слой (второй режим). Величина δ_{34} определяется соотношением

$$\delta_{34} = -2\operatorname{arctg}(h_4/h_3\tau),\tag{4}$$

где $\tau = 1$ и $\varepsilon_4/\varepsilon_3$ для ТЕ и ТМ мод соответственно. Здесь и далее поперечные компоненты волнового вектора в каждом из слоев определяются выражениями:

$$h_{1,4}^2 = \beta^2 - k_0^2 \varepsilon_{1,4}, \qquad h_{2,3}^2 = k_0^2 \varepsilon_{2,3} - \beta^2.$$
 (5)

Для первого режима каналирования в соответствии с [4]

$$\delta_{32} = -2 \operatorname{arctg} \left[(1 - r_{32})(1 + r_{32})^{-1} \operatorname{tg}(\phi/2) \right], \tag{6}$$

где изменение фазы волны при прохождении в градиентном слое

$$\phi = \delta_c + 2 \int_0^{x_c} \left(k_0^2 \varepsilon_2(x) - \beta^2 \right)^{1/2} dx,$$
(7)

а $\delta_c = \pi/2$ — фазовый сдвиг на каустике в градиентном слое [1],

$$r_{32} = (\sigma h_3 - h_2)(\sigma h_3 + h_2)^{-1}$$
(8)

— амплитудный коэффициент отражения на границе полубесконечных сред с параметрами ε_2 и ε_3 , а $\sigma = 1$ и $\varepsilon_2/\varepsilon_3$ для ТЕ и ТМ мод соответственно. Используя выражение для координаты каустики $x_c = 2a\ln(v/w)$ и проводя в (7) интегрирование, получаем

$$\phi = 4\nu(\sqrt{1-b} - \sqrt{b}\arccos\sqrt{1-b}) + \pi/2, \tag{9}$$

где введены обозначения $v = ak_0(\varepsilon_2 - \varepsilon_1)^{1/2}$, $w = ah_1$, $b = (w/v)^2$. Подставляя в (3) полученные выражения, запишем ДУ для первого волноводного режима:

$$tg(\phi/2) = (\sigma h_3/h_2)tg[L_3h_3 - arctg(h_4/\tau h_3)].$$
(10)

В условиях второго волноводного режима h_2 становится мнимой величиной и волна затухает в градиентном слое на глубине $x \simeq \lambda/2\pi$ [4]. На границе градиентного слоя с покровным имеет место ПВО, что определяет отсутствие каустики, вследствие чего $\delta_c = 0$. В результате ДУ в этом случае принимает вид:

$$th(\tilde{\phi}/2) = (\sigma h_3/\tilde{h}_2) \operatorname{tg} \left[-L_3 h_3 + \operatorname{arctg}(h_4/\tau h_3)\right],$$
 (11)

где $\tilde{h}_2 = (\beta^2 - k_0^2 \varepsilon_2)^{1/2}$ и $\tilde{\phi} = 4v(\sqrt{b-1} - \sqrt{b} \operatorname{arctg} \sqrt{(b-1)/b}).$

Нами также было получено ДУ для рассматриваемой волноводной структуры на основе волнового подхода, которое имеет вид:

$$J_{2w}(2v)ah_3(h_2\tau - h_3 \operatorname{tg} h_3L_3) + J'_{2w}(2v)v\sigma(h_2\tau - \operatorname{tg} h_3L_3 + h_3) = 0, (12)$$

где J_{2w} и J'_{2w} — функция Бесселя порядка 2w и ее производная [5]. Явное аналитическое различие ДУ (10) и (11) с одной стороны и (12) с другой требует сравнительного анализа следующих из них результатов.

Для его проведения выберем параметры, соответствующие реальной волноводной структуре, выполненной на основе ионообменного Ag⁺-волновода с полупроводниковым покрытием из халькогенидного стеклообразного полупроводника [5]: $\varepsilon_1 = 2.04, \ \varepsilon_2 = 2.31, \ \varepsilon_3 = 6.15,$ $\varepsilon_4 = 1.00$ (на длине волны $\lambda = 0.6328 \,\mu{
m m}$). Анализ полученных ДУ показывает, что их решения в общем случае определяются набором модовых чисел $\nu = \nu_2 + \nu_3$, где ν_2 соответствует целому числу энергетических максимумов поля моды в градиентном слое, а ν_3 — в покровном слое. Таким образом, модовые числа ν_2 и ν_3 определяют характер распределения поля моды с заданным номером ν , соответствующим полному числу энергетических минимумов в волноводной структуре. Набег фазы моды в покровном слое удобно представить в виде $L_3h_3 = (\nu + \alpha)\pi$, где параметр α принимает значения от нуля до единицы. Введем толщину $L_h = \pi/h_3$, являющуюся в общем случае функцией постоянной распространения β . Если $\varepsilon_2 - \varepsilon_1 \ll \varepsilon_1$, а ε_3 значительно превышает ε_1 и ε_2 (высокопреломляющее покрытие), величину L_h можно считать константой. В этом случае $L_3 = (\nu + \alpha)L_h$, а величина L_h является характерным периодом для толщины покровного слоя.

На рис. 1 представлены зависимости постоянной распространения β от нормированной толщины градиентного слоя a/λ , полученные для первого режима каналирования излучения на основе уравнений (10)

Рис. 1. Дисперсионные зависимости для первого волноводного режима.

Рис. 2. Зависимости постоянной распространения от толщины покровного слоя.

и (12) для первых четырех ($\nu_2 = 0, \ldots, 3; \nu_3 = 1$) ТЕ и ТМ мод и значений параметров $L_3 = L_h = 0.158 \,\mu\text{m}$, $\alpha = 0$. В пределах графической точности оба ДУ дают совпадающие зависимости $\beta(a/\lambda)$. На вставке показан в большем масштабе участок дисперсионных кривых для моды с $\nu_2 = 0$, полученных на основе лучевого и волнового (сплошные и пунктирные кривые) подходов. Наибольшее различие между решениями ДУ (10) и (12) $\Delta\beta/\beta$, где $\Delta\beta = |\beta_{\text{волн}} - \beta_{\text{луч}}|$, для выбранных параметров не превышает $2 \cdot 10^{-4}$. Дисперсионные зависимости, относящиеся ко второму волноводному режиму, лежат выше значения $\beta = 2\pi\sqrt{\varepsilon_2}/\lambda = 1.55 \cdot 10^5 \,\text{cm}^{-1}$ и на рисунке не приведены.

На рис. 2 представлены зависимости постоянной распространения β от нормированной толщины покровного слоя L_3/L_h для трех ($\nu = 2, 6, 10$) ТЕ и ТМ мод при значении параметра $a = 3.87 \,\mu$ m. Нижние ступеньки на каждой из приведенных кривых соответствуют значению $\nu_3 = 0$. При переходе от одной ступеньки к соседней вверх ν_3 увеличивается, а ν_2 уменьшается на единицу. Приведенные зависимости $\beta(a/\lambda)$ построены на основе лучевого и волнового ДУ и в пределах графической точности совпадают.

В заключение укажем, что изложенный метод нахождения ДУ в лучевом приближении справедлив не только для экспоненциального, но и любого градиентного профиля $\varepsilon_2(x)$ в рассматриваемой волноводной структуре.

Список литературы

- [1] Адамс М. // Введение в теорию оптических волноводов. М.: Мир, 1984. 512 с.
- [2] Удоев Ю.П. // Оптика и спектроскопия. 1988. Т. 65. В. 12. С. 1327-1330.
- [3] Адамсон П.В. // Оптика и спектроскопия. 1991. Т. 70. В. 1. С. 211-215.
- [4] Борн М., Вольф Э. // Основы оптики. М.: Наука, 1973. 856 с.
- [5] Справочник по специальным функциям / Под. ред. Абрамовица М. и Стиган И. М.: Наука, 1979. 839 с.
- [6] *Мотт Н., Дэвис Э. //* Электронные процессы в некристаллических веществах. М.: Мир, 1982. 658 с.