от Фазовая мультистабильность в системах с квазипериодическим воздействием

© Т.Е. Вадивасова, О.Н. Сосновцева, А.Г. Баланов

Саратовский государственный университет им. Н.Г. Чернышевского

Поступило в Редакцию 31 мая 1999 г.

Исследуется влияние квазипериодической накачки на режим фазовой мультистабильности в связанных фейгенбаумовских осцилляторах. Обнаружен ряд новых эффектов, связанных со странными нехаотическими аттракторами.

Особенностью взаимодействия осцилляторов с фейгенбаумовским механизмом образования хаоса является возникновение мультистабильности периодических и хаотических режимов [1–5]. Мультистабильность в данном случае связана с возможностью взаимной синхронизации осцилляторов в различных фазах по отношению друг к другу и поэтому может быть названа фазовой мультистабильностью (ФМ). Для периодических колебаний, претерпевших k раз удвоение периода, количество возможных предельных циклов в фазовом пространстве взаимодействующих осцилляторов становится равным 2^k . Фазовый сдвиг между осцилляторами может принимать значения $\phi_0 + 2\pi m$, где $m = 0, 1, 2, \ldots 2^k - 1$. В системах с дискретным временем $\phi_0 = 0$, имеет смысл числа итераций, на которое сдвинуты во времени колебания парциальных систем. ФМ сохраняется и при переходе к слабо развитому хаосу.

В данной работе рассматривается влияние на ФМ квазипериодического внешнего воздействия. Исследуется система связанных логистических отображений, в каждое из которых введено квазипериодическое возбуждение с одним и тем же числом вращения:

$$\begin{aligned} x_{n+1} &= \varepsilon - x_n^2 + \gamma (x_n^2 - y_n^2) + a_1 \cos 2\pi z_n, \\ y_{n+1} &= \varepsilon - y_n^2 + \gamma (y_n^2 - x_n^2) + a_2 \cos 2\pi z_n, \\ z_{n+1} &= z_n + W, \mod 1, \end{aligned}$$
(1)

где x_n , y_n — динамические переменные парциальных систем; ε — параметр нелинейности; γ — параметр связи; z_n — фаза воздействия, которая предполагается одинаковой для обеих парциальных систем; W —

49

4

число вращения, задаваемое внешней силой (соответствует отношению частот воздействия в потоковой системе). Оно фиксировалось равным золотому сечению: $W = 0.5(\sqrt{5} - 1)$. Символ mod 1 означает, что 0 $\leqslant z_n \leqslant$ 1. Амплитуды воздействия на первый и второй осциллятор есть соответственно: $a_1 = a_0$ и $a_2 = pa_0$, где p — расстройка амплитуд. Предполагалось, что расстройка отсутствует (p = 1), в этом случае у системы (1) имеется инвариантное многообразие U, задаваемое условием $x_n = y_n$. Траектории, стартующие из точек, принадлежащих U, никогда не покидают инвариантного многообразия. Движения в плоскости U соответствуют случаю m = 0 и называются синфазными. Режимы, для которых $m \neq 0$, называются несинфазными. Соответствующие им фазовые траектории не лежат в U. Мультистабильность в системе (1) в отсутствие внешнего воздействия ($a_0 = 0$) исследовалась в [3,4]. При слабой связи наблюдалось сосуществование режимов, принадлежащих нескольким ветвям, порождаемым предельными циклами, соответствующими различным значениям *m*. С ростом параметра ε происходит возникновение хаотических режимов различных ветвей и их последующее объединение в глобальный хаотический аттрактор. С ростом параметра связи у несинфазные режимы исчезают, и наблюдается переход к так называемой полной синхронизации [5,6].

Как показали исследования системы (1) при $a_0 \neq 0, p = 1$ и $\gamma = 0.002$, проведенные в данной работе, явление ФМ оказывается достаточно грубым по отношению к слабому квазипериодическому воздействию. Сохраняются основные ветви режимов, существовавшие в автономной системе. Однако вместо периодических колебаний наблюдаются квазипериодические режимы и режимы, соответствующие странному нехаотическому аттрактору [7-12]. Последние возникают в результате фрактализации инвариантной замкнутой кривой, являющейся образом двухчастотных квазипериодических колебаний в системе с дискретным временем. В системе (1) обнаружены два механизма фрактализации: 1) постепенное искажение формы кривой, приводящее к потере гладкости [11]; 2) мгновенная фрактализация в результате кризиса, вызыванного касанием устойчивой и неустойчивой инвариантной кривой [8,9]. Для диагностики режима странного нехаотического аттрактора наряду с расчетом ляпуновских показателей использовался критерий фазовой чувствительности, предложенный в [10]. Для краткости будем применять следующие обозначения динамических режимов: *Т* — квазипериодические двухчастотные колебания, СНА — странный нехаотический аттрактор, СА — странный хаотический аттрактор; ци-

фра, стоящая перед буквенным обозначением, соответствует количеству лент (частей) аттрактора, верхний индекс: 0, 1, 2, 3 равен числу m, определяющему фазовый сдвиг между последовательностями x_n и y_n . Знак Σ указывает на объединение предельных множеств различных ветвей.

Последовательность режимов с ростом ε , типичная для малых амплитуд a_0 , отражена на диаграмме рис. 1, $a (a_0 = 0.01)$. Отмечены три ветви режимов: А, В и С, порождаемые квазипериодическими аттракторами, для которых m = 0, 1 и 2 соответственно. Синфазный квазипериодический аттрактор T⁰ (ветвь A) претерпевает две бифуркации удвоения (при $\varepsilon \approx 0.750$ и $\varepsilon \approx 1.253$), после чего происходит его фрактализация первым из указанных способов ($\varepsilon \approx 1.376$). Образование СНА в инвариантном многообразии U сопровождается нарушением грубости синфазного режима. При задании начальной точки вне многообразия U наблюдается длительная переходная перемежаемость [13–15]. Малая расстройка амплитуд воздействия (~ 1.0001) или слабый шум приводят к явлениям типа "bubbling" (пузырение) [13,14]. Такое поведение наводит на мысль, что не только хаотический, но и странный нехаотический аттрактор может иметь свойства аттрактора Милнора [16]. Дальнейшее увеличение ε приводит при $\varepsilon \approx 1.380$ к бифуркации прорыва, которая диагностируется по смене знака трансверсального ляпуновского показателя [6,15]. Однако во всех исследованных случаях бифуркации прорыва предшествовал переход к хаотическому поведению. При $a_0 = 0.01$ переход к хаосу наблюдается при $\varepsilon \approx 1.379$. После бифуркации прорыва образуется аттрактор $2CA_A^{\Sigma}$, уже не лежащий в U. Далее он становится хаотическим седлом ($\varepsilon \approx 1.392$) и изображающая точка уходит на аттрактор ветви С. Несинфазный хаос ветви С развивается по аналогичному сценарию: T -> CHA -> CA (соответственно при $\varepsilon \approx 1.378$ и $\varepsilon \approx 1.379$). При $\varepsilon \approx 1.394$ происходит объединение частей хаотического аттрактора ветви С с одновременным присоединением хаотического седла ветви A. Образовавшийся объединенный хаос $2CA_C^{\Sigma}$ при $\varepsilon \approx 1.519$ также перестает быть притягивающим, и изображающая точка переключается на аттрактор ветви В. Для ветви В характерно рождение трехчастотного квазипериодического режима ($\varepsilon \approx 1.259$), образом которого является двумерный тор отображения. На торе рождается пара инвариантных замкнутых кривых 4T¹ и 4T³, соответствующих m = 1 и 3. Они обладают свойством взаимной симметрии относительно замены $x_n \rightarrow y_n$. С ростом ε происходит их фрактализация ($\varepsilon \approx 1.382$) и возникновение хаоса ($\varepsilon \approx 1.385$). Хаотические аттракторы 4CA¹ и 4CA³

4^{*} Письма в ЖТФ, 1999, том 25, вып. 22

Рис. 1. Диаграмма режимов системы (1) без расстройки (p = 1): a - при изменении параметра ε и фиксированном значении $a_0 = 0.1$; $b - при изменении параметра <math>a_0$ и фиксированном значении $\varepsilon = 1.2$: I -удвоение периода, 2 -фрактализация инвариантной кривой, 3 -граница хаоса, 4 -кризис, 5 -рождение трехмерного тора, 6 -участки негрубого аттрактора.

Рис. 1 (продолжение).

объединяются при $\varepsilon \approx 1.398$ в один аттрактор 2CA¹. При $\varepsilon \approx 1.523$ происходит объединение аттрактора 2CA¹ с непритягивающим хаотическим множеством и возникает глобальный аттрактор CA^{Σ}, включающий хаотические множества всех ветвей.

Рис. 2. Проекции странных нехаотических аттракторов и соответствующие ненулевые ляпуновские показатели при $\varepsilon = 1.2$: $a - \mathbf{X} - \mathbf{Y}$ -проекции сосуществующих аттракторов CHA⁰ и 2CHA¹; $b - \mathbf{X} - \mathbf{Z}$ -проекция аттрактора CHA⁰; $c - \mathbf{X} - \mathbf{Y}$ -проекция нехаотического режима перемежаемости, возникающего при введении расстройки p = 1.0001.

Начиная с некоторого значения амплитуды воздействия a_0 , мультистабильность отсутствует. На диаграмме (рис. 1, b) представлена последовательность режимов при $\varepsilon = 1.2$ в интервале изменения амплитуды от $a_0 \approx 0.118$ до $a_0 \approx 0.130$. Здесь наблюдаются режимы только ветвей **A** и **B**, которые объединяются с ростом a_0 . При $a_0 \approx 0.1185$ синфазный квазипериодический аттрактор $2T^0$ (ветвь **A**) претерпевает кризис, сопровождающийся объединением частей аттрактора [8]. В результате происходит фрактализация инвариантной кривой, и возникает синфазный странный нехаотический аттрактор CHA⁰. На ветви **B** также наблюдается фрактализация кривой $2T^1$ ($a_0 \approx 0.1182$), но без кризиса. Возникает несинфазный аттрактор 2CHA¹. Проекции CHA⁰ и 2CHA¹

Письма в ЖТФ, 1999, том 25, вып. 22

представлены на рис. 2, *a*, *b*. При $a_0 \approx 0.1188$ нехаотическое фрактальное множество ветви **B** перестает быть притягивающим. Аттрактор СНА⁰ становится единственным в фазовом пространстве. Однако он не является грубым. Расстройка p = 1.0001 приводит к объединению нехаотических фрактальных множеств ветвей **A** и **B**. Объединенный аттрактор (рис. 2, *c*) также не является хаотическим. В отсутствие расстройки переход к хаосу и бифуркация прорыва наблюдаются почти одновременно при $a_0 \approx 0.1260$, после чего образуется объединенный хаотический аттрактор СА^{Σ}.

Данная работа частично поддержана грантом РФФИ (N 98–02– 16531). Т.Е. Вадивасова также благодарит за поддержку Международную соросовскую программу в области точных наук (грант N d99–835, 1999 г.)

Список литературы

- [1] Kaneko K. // Progr. Theor. Phys. 1983. V. 69. N 5. P. 1427-1442.
- [2] Кузнецов С.П. // Изв. вузов. Радиофизика. 1985. Т. 28. № 8. С. 991-1007.
- [3] Астахов В.В. и др. // Письма в ЖТФ. 1988. Т. 15. В. 3. С. 60-64.
- [4] Астахов В.В. и др. // ЖТФ. 1990. Т. 60. В. 10. С. 19-26.
- [5] Postnov D.E. et al. // Chaos. 1999. V. 9. N 1. P. 227-232.
- [6] Pecora L.M., Carroll T.L. // Phys. Rev. Lett. 1990. V. 64. P. 821-823.
- [7] Grebogi C. et al. // Physica D. 1984. V. 13. P. 261-268.
- [8] Heagy J.F., Hammej S.M. // Physica D. 1994. V. 70. P. 140-153.
- [9] Feudel U., Pikovsky A.S. // Physica D. 1995. V. 88. P. 176-186.
- [10] Pikovsky A.S., Feudel U. // Chaos. 1995. V. 5. P. 253-260.
- [11] Anishchenko V.S., Vadivasova T.E., Sosnovtseva O.V. // Phys. Rev. E. 1996.
 V. 53. N 5. P. 4451–4457.
- [12] Ramaswamy R. // Phys. Rev. E. 1997. V. 56. P. 7294-7296.
- [13] Ashwin P., Buescu J., Stewart I. // Nonlinearity. 1994. V. 9. P. 703-737.
- [14] Hasler M., Maistrenko Y. // IEEE Transactions on Circuits and Systems. Fundamental Theory and Applications. 1997. V. 44. P. 856.
- [15] Ott E., Sommerer J.C. // Phys. Lett. A. 1994. V. 188. P. 39-47.
- [16] Milnor J. // Commun. Math. Phys. 1985. V. 99. P. 177-195.