04;12

Влияние крутизны фронта высоковольтных наносекундных импульсов напряжения на пробой воздушных промежутков

© Л.М. Василяк, С.П. Ветчинин, Д.Н. Поляков

Научно-исследовательский центр теплофизики импульсных воздействий Объединенного института высоких температур РАН, Москва

Поступило в Редакцию 2 июня 1999 г.

При уменьшении фронта импульса напряжения отрицательной полярности до 0.5-2.5 ns скорость пробоя возрастает до 10-20 cm/ns. Резкое увеличение скорости объясняется возникновением короткоимпульсного пучка высокоэнергетичных электронов, рождающих в промежутке достаточное количество начальных электронов.

Искровой пробой длинных воздушных промежутков атмосферного давления происходит по стримерному и стримерно-лидерному механизму. Скорость лидера составляет $2-5 \text{ cm}/\mu \text{s}$ [1], хотя скорость стримера может достигать 1 сm/ns, поэтому считается, что крутизна фронта импульса напряжения не должна оказывать влияния на время замыкания промежутка. С другой стороны, известно, что пробой длинных газообразных трубок импульсами с наносекундным фронтом происходит в виде высокоскоростных волн ионизации со скоростью замыкания промежутка 1-10 cm/ns [2] за счет возникновения высокоэнергетичных электронов во фронте волны. Известно, что возникновение убегающих электронов при пробое коротких промежутков в плотных газах высоковольтными импульсами с наносекундным фронтом существенно изменяет динамику пробоя по сравнению со статическим или микросекундным пробоем [3,4].

Целью настоящей работы является исследование процессов, влияющих на скорость распространения электрического пробоя в атмосферном воздухе при увеличении крутизны импульса напряжения. Схема эксперимента и применяемые методики аналогичны используемым в работе [5]. Пробой воздушных промежутков длиной до 25 cm разной геометрии (шар-шар с диаметрами 4 cm, плоскость-плоскость в виде

74

Рис. 1. Зависимость скорости пробоя от длины разрядного промежутка: a -шар-шар, b -плоскость-плоскость: 1-5 -отрицательная полярность, 6 -положительная; 1 -фронт 0.5 ns, 2 - 1.5 ns, 3 - 2.5 ns, 4 - 5 ns, 5, 6 - 8 ns.

дисков диаметрами 21 cm, острие–плоскость и острие–острие диаметрами 1 mm и длиной 4 cm) осуществлялся импульсами с амплитудой до 420 kV длительностью 60 ns и фронтом от 0.5 до 8 ns. Средняя скорость распространения разряда в промежутке определялась по временной задержке между появлением импульса напряжения на высоковольтном электроде и появлением импульса тока на низковольтном электроде [5].

Рис. 1 (продолжение).

Зависимости средней скорости прорастания разряда от длины разрядного промежутка при амплитуде напряжения 420 kV для импульсов отрицательной и 350 kV для импульсов положительной полярности при разных длительностях фронта приведены для конфигурации шаршар на рис. 1, а и плоскость-плоскость на рис. 1, b. В неоднородном электрическом поле скорость сильно зависит от крутизны фронта падающего импульса и растет с уменьшением длительности фронта. Средняя скорость для импульсов отрицательной полярности с фронтом меньше 3 ns уменьшается с увеличением длины промежутка и растет для импульсов с более пологими фронтами. Быстрее всего пробой

происходит в конфигурации шар-шар. Скорость пробоя максимальна при длительности фронта 0.5 пs и достигает величины 10-20 cm/ns для импульсов отрицательной полярности в промежутках длиной менее 8 cm. С увеличением длины промежутка скорость прорастания канала падает до 2-4 cm/ns и выходит на уровень, который наблюдается для импульсов с фронтом 5-8 ns. Такая же зависимость наблюдается в конфигурации плоскость-плоскость. Для промежутков геометрии остриеострие и острие-плоскость величина скорости меньше, чем для шаршар, но больше, чем для плоскость-плоскость. Скорость пробоя в однородном поле для импульсов положительной полярности, в отличие от отрицательной, несколько выше, чем в неоднородном, и растет с ростом длины промежутка.

Высокая скорость развития пробоя связана с дополнительными механизмами, возникающими при высоких скоростях нарастания напряжения. На рис. 2 показана величина среднего пробойного поля, соответствующая моменту регистрации пробоя в промежутке шаршар для импульсов отрицательной полярности. Она сильно зависит от длительности фронта. Для импульсов с длинными фронтами средние пробойные поля в малых промежутках могут достигать значений 200 kV/cm. Для импульсов с предельно короткими фронтами 0.5–2.5 ns, когда пробой коротких промежутков происходит на фронте импульса напряжения, средние пробойные поля в малых промежутках резко падают до значений 15-20 kV/cm. Следует отметить, что при пробое промежутков с однородным полем (плоскость–плоскость) импульсами отрицательной полярности с длительностью фронта 8 ns средние пробойные поля в отрицательной полярности с воднородном поле.

Известно, что при пробое промежутков длиной несколько миллиметров импульсами с наносекундным фронтом в начальный момент может возникать пучок быстрых электронов [3]. В наших экспериментах были обнаружены мощные пучки высокоэнергетичных электронов в существенно более длинных промежутках. Быстрые электроны регистрировались по наличию тормозного рентгеновского излучения. Рентгеновское излучение на поверхности заземленного электрода в геометрии шар– плоскость надежно фиксировалось по почернению пленки PT-5 после 3-5 пробоев только при пробое промежутков длиной менее 8 ст импульсами отрицательной полярности с короткими фронтами 0.5-2.5 пs. Для импульсов с более длинными фронтами рентгеновского излучения из промежутка не обнаружено. Используя метод фольг, удалось определить, что максимум спектра быстрых электронов приходится на энергии

Рис. 2. Зависимость среднего поля пробоя от длины разрядного промежутка для конфигурации шар-шар при отрицательной полярности импульсов: *1* — фронт 0.5 ns, *2* — 2.5 ns, *3* — 5 ns.

60÷100 keV. В нашем случае число быстрых электронов, образующихся при пробое, существенно выше, чем в [3].

Возникающий пучок высокоэнергетичных электронов может существенно повлиять на развитие пробоя и обеспечить сверхвысокие скорости при пробое крутыми импульсами отрицательной полярности. Скорость прорастания стримеров ограничивается рождением начальных электронов перед его головкой. Быстрые электроны и сопутствующие им вторичные электроны, возникающие при движении пучка в газе, создают предварительную ионизацию перед фронтом разряда, существенно облегчая его продвижение вперед. В этом случае для движения фронта ионизации даже с очень высокими скоростями нужна небольшая напря-

женность внешнего электрического поля, что и подтверждается данными рис. 2, где зафиксировано падение напряженности для импульсов с коротким фронтом.

В наших условиях ускоренные электроны появляются на сталии распространения волны пробоя по промежутку, в отличие от [3], где они регистрировались только на фронте тока при замыкании разрядом промежутка. Их возникновение, скорее всего, можно объяснить механизмом поляризационного ускорения на фронте первичного стримера [3], который развивается в прикатодной области во время резкого нарастания напряжения. При достаточной напряженности внешнего поля это стример с сильным локальным полем на головке прорастает по ионизованной дорожке, созданной в газе потоком быстрых электронов. Вследствие большой скорости ионизационных процессов в плотном газе такой отрицательный стример представляет собой мощный высокоскоростной фронт ионизации, который оставляет за собой хорошо проводящий плазменный канал. Последний осуществляет вынос потенциала электрода к головке стримера. При этом ток проводимости, втекающий во фронт, должен быть не меньше, чем требуется для зарядки емкости удлиняющегося хорошо проводящего плазменного канала: I = CvU ~ 50-100 A, где С — погонная емкость канала стримера, у — скорость, U — потенциал электрола. В случае плоскостьплоскость появление высокоэнергетичных электронов затруднено из-за однородного распределения поля.

При положительной полярности импульса напряженность электрического поля вблизи заземленного электрода в промежутке с неоднородным полем будет меньше, чем у высоковольтного, быстрые электроны не образуются либо их мало, к тому же они движутся в направлении, противоположном движению фронта волны ионизации, что резко снижает их воздействие на развитие пробоя.

Таким образом, увеличение крутизны фронта импульса отрицательной полярности приводит к пробою в виде высокоскоростного сильноточного отрицательного стримера, фронт которого является источником высокоэнергетичных электронов, вылетающих из него вперед и создающих предварительную ионизацию перед ним. Такой механизм обеспечивает скорости пробоя на порядок большие, чем при стримерном пробое с фотоионизацией перед фронтом.

Работа выполнена при поддержке РФФИ (грант № 98-02-17435).

Список литературы

- [1] Базелян Э.М., Райзер Ю.П. Искровой разряд. М.: Изд. МФТИ, 1997. 320 с.
- [2] Василяк Л.М., Костюченко С.В., Кудрявцев Н.Н., Филюгин И.В. // УФН. 1994. Т. 164. С. 263.
- [3] Бабич Л.П., Лойко Т.В., Цукерман В.А. // УФН. 1990. Т. 160. С. 50.
- [4] Королев Ю.Д., Месяц Г.А. Физика импульсного пробоя газов. М.: Наука, 1991.
- [5] Василяк Л.М., Ветчинин С.П., Поляков Д.Н. // Материалы Всероссийской научно-образовательной олимпиады "Плазма, XX век", включающие доклады по физике низкотемпературной плазмы ФНТП-98 и лекции школы молодых ученых. Петрозаводск, 22–27 июня 1998 г. С. 327.