06;12 Подавление паразитного обратного управления по подложке при гидрогенизации ионно-легированных структур арсенида галлия

© В.А. Кагадей, Ю.В. Лиленко, Л.С. Широкова, Д.И. Проскуровский

ГНПП "Научно-исследовательский институт полупроводниковых приборов", Томск Институт сильноточной электроники СО РАН, Томск

Поступило в Редакцию 7 февраля 1999 г.

Установлено, что с помощью гидрогенизации ионно-легированных структур арсенида галлия можно подавить паразитное обратное управление по подложке. Приведены закономерности, характеризующие степень подавления обратного управления в зависимости от режимов гидрогенизации. Наблюдаемые закономерности, по-видимому, обусловлены процессами образования и распада комплексов водорода с глубокими центрами.

Принято считать, что эффект паразитного обратного управления по подложке (багетинг-эффект) в GaAs обусловлен влиянием глубоких центров, расположенных в объеме полуизолирующей подложки и/или на границе раздела активный *n*-слой–полуизолирующая подложка. Природа таких центров до конца не ясна [1,2].

Одним из методов, позволяющих уменьшить отрицательное влияние багетинг-эффекта на работу транзисторов интегральных схем, является локальная имплантация ионов Be^+ , необходимая для создания *p*-карманов под каналом *n*-типа проводимости транзистора [3]. Тем самым канал транзистора изолируется от воздействия подложки. Другим способом подавления обратного управления может быть пассивация электрически активных глубоких центров, ответственных за эффект. Действительно, известно [4,5], что гидрогенизация в атомарном водороде приводит к пассивации целого ряда мелких и глубоких центров в монокристаллическом Si и GaAs. Однако детальных исследований по гидрогенизации ионно-легированных структур GaAs выполнено крайне

37

мало, а возможность уменьшения обратного управления по подложке вообще не исследовалась. В работе впервые приведено экспериментальное подтверждение возможности подавления багетинг-эффекта с помощью гидрогенизации.

Исследования были проведены на структурах $n^+ - n$ -типа проводимости, полученных имплантацией ионов Si⁺ в подложки полуизолирующего GaAs. Концентрация электронов n_e в контактном n^+ -слое составляла $(1.5-2) \cdot 10^{18} \text{ cm}^{-3}$, а в активном *n*-слое — $3 \cdot 10^{17} \text{ cm}^{-3}$. Из партии изготовленных структур отбирались образцы с максимальным уровнем багетинг-эффекта. Гидрогенизация данных образцов проводилась в атомарном водороде, в установке, описанной в [6,7]. Температура образцов при гидрогенизации составляла T = 100-300°C, время обработки $t = 5-90 \,\mathrm{min}$, а давление водорода $10^{-2} \,\mathrm{Pa}$. Концентрация электронов n_e в ионно-легированном слое определялась из вольт-фарадных измерений на установке с ртутным зондом. Величина паразитного обратного управления по подложке оценивалась по методу, предложенному в работах [8,9]. В основу метода положено то, что степень изменения сопротивления полупроводниковой структуры при приложении к ней напряжений смещения прямо пропорциональна величине обратного управления по подложке. Напряжение смещения прикладывалось к контактному n^+ -слою, а измерение сопротивления структуры производилось бесконтактным способом, для чего исследуемая струкутра помещалась в сверхвысокочастотный (СВЧ) резонатор, работающий на частоте 38 GHz. Изменение сопротивления структуры фиксировалось по изменению отраженной от резонатора СВЧ мощности Р. Таким образом, измерение изменения величины Р при приложении смещения позволяло оценить величину багетинг-эффекта.

Измерения концентрации носителей в ионно-легированном слое показали, что в результате гидрогенизации происходит уменьшение n_e от $(1-2)\cdot 10^{18}$ до 10^{17} сm⁻³ и менее. Это свидетельствует о том, что атомарный водород, проникнув в приповерхностный слой полупроводниковой структуры, образовал электрически нейтральные комплексы с атомами легирующей примеси. Известно, что распад комплексов водород–мелкий примесный центр в GaAs происходит при более низкой температуре, чем распад комплексов водорода с глубокими центрами [10]. Поэтому для восстановления исходной концентрации носителей использовался низкотемпературный отжиг в следующем режиме: $T^* = 400-475^{\circ}$ С, время отжига $t^* = 1-10$ min. Проведенные после отжига измерения

Рис. 1. Зависимости отраженной от СВЧ резонатора мощности *P* от времени *t* при приложении напряжения смещения для исходного образца (1) и образца после гидрогенизации и отжига; режим гидрогенизации: $T = 150^{\circ}$ C, $t = 30 \min (2)$; $T = 150^{\circ}$ C, $t = 30 \min + T = 200^{\circ}$ C, $t = 30 \min (3)$.

свидетельствовали о практически полном восстановлении концентрации носителей.

На рис. 1 приведены зависимости отраженной от СВЧ резонатора мощности P от времени t для исходного образца и образца после гидрогенизации и отжига. Начало координат по оси времени соответствует моменту подачи напряжения смещения на n^+ -слой структуры. В результате гидрогенизации при $T = 150^{\circ}$ С в течение t = 30 min и отжига произошло уменьшение исходного значения P на $\sim 30\%$. Дополнительная гидрогенизация этого же образца, проведенная при $T = 200^{\circ}$ С в течение t = 30 min, и отжиг позволили добиться уменьшения P на $\sim 95\%$ от исходного уровня. Экспериментально установлено, что полученное минимальное значение P (кривая 3) соответствует такой величине обратного управления, которая не оказывает существенного воздействия на работу интегральной схемы.

Рис. 2. Зависимости отраженной от СВЧ резонатора мощности *P* от времени *t* при приложении напряжения смещения для исходного образца (1); для образца после гидрогенизации ($T = 150^{\circ}$ C, t = 30 min) и отжига при $T^* = 400^{\circ}$ C, $t^* = 5$ min + $T^* = 450^{\circ}$ C, $t^* = 1$ min (2), для этого же образца после дополнительного отжига при $T^* = 475^{\circ}$ C, $t^* = 2$ min (3), для этого же образца после дополнительного отжига при $T^* = 475^{\circ}$ C, $t^* = 20$ min (4).

Дополнительные исследования показали, что влияние обработки в атомарном водороде на величину багетинг-эффекта увеличивается с ростом времени гидрогенизации. Оптимальное значение температуры гидрогенизации близко к $T = 150-200^{\circ}$ С. Гидрогенизация при более низкой или более высокой температуре оказывает меньшее влияние на электрофизические параметры структуры.

Особый интерес представляет тот факт, что в некоторых случаях величина P и, следовательно, степень подавления обратного управления по подложке зависят не только от режимов гидрогенизации, но и от режимов отжига (рис. 2). Гидрогенизация и последовательно выполненные отжиги ($T^* = 400^{\circ}$ C, $t^* = 5 \min + T^* = 450^{\circ}$ C, $t^* = 1 \min$) привели к уменьшению P на $\sim 20\%$ от исходного уровня (кривая 2). В результате дополнительного отжига при $T^* = 475^{\circ}$ C, $t^* = 2 \min$

произошло практически полное подавление багетинг-эффекта (величина P уменьшилась на ~ 97%, кривая 3). Серия продолжающихся отжигов приводит к постепенному увеличению P (кривая 4).

Наблюдаемое в экспериментах изменение электрофизических параметров ионно-легированных структур может быть обусловлено наличием атомарного водорода в ионно-легированном слое, на границе раздела легированный слой-подложка и/или в полуизолирующей положке. Подавление паразитного обратного управления по подложке, по-видимому, обусловлено пассивацией атомарным водородом глубоких центров, ответственных за существование багетинг-эффекта и расположенных в приповерхностном слое GaAs. Экспериментально обнаруженные закономерности изменения величины обратного управления по подложке в зависимости от режимов определяются закономерностями образования и распада комплексов водорода с глубокими центрами.

Таким образом, в данной работе обнаружено, что гидрогенизация в атомарном водороде $n^+ - n$ ионно-легированных структур GaAs приводит к подавлению явлений, по-видимому обусловленных процессами образования и распада комплексов водорода с глубокими центрами.

Авторы благодарны Г.И. Айзенштату за плодотворные дискусии.

Список литературы

- [1] Lee M., Forbes L. // IEEE Trans. Electron. Dev. 1990. V. ED-37. N 10. P. 2148–2157.
- [2] Goto N. et al. // IEEE Trans. Electron. Dev. 1990. V. ED-37. N 8. P. 1821–1827.
- [3] Allstot D.J., Canfield P.C. // IEEE. J. Solid State Circuits. 1990. V. 25. N 6. P. 1544–1549.
- [4] Chevallier J., Aucouturier M. // Ann. Rev. Mater. Sci. 1988. V. 18. P. 219-256.
- [5] Corbett J.W., Pearton S.J., Stavola M. // Defect control in semiconductors / Ed. K. Sumino. Elsevier Science Publishers B.V. North-Holland. 1990. P. 53–63.
- [6] Kagadei V.A., Proskurovsky D.I. // J. Vac. Sci. Technol. A. 1998. V. 16 (4).
 P. 2556–2561.
- [7] Кагадей В.А., Проскуровский Д.И., Регер С.Д., Ромась Л.М. // Микроэлектроника. 1998. Т. 27. № 1. С. 10–15.
- [8] Prinz V.Ya., Rechkunov S.N., Samoylov V.A. // Inst. Phys. Conf. Ser. 1997.
 V. 160. P. 487–490.
- [9] Принц В.Я. // Патент России № 2006984. Б.И. 30.01.1994.
- [10] Омельяновский Э.М., Пахомов Ф.В., Поляков Ф.Я. // Физика и техника полупроводников. 1987. Т. 21. № 5. С. 842–847.